Enhancing Environmental Enforcement with Near Real-Time Monitoring: Likelihood-Based Detection of Structural Expansion of Intensive Livestock Farms


Publish Date:
December 1, 2021
    , , , ,
International Journal of Applied Earth Observation and Geoinformation
Related Person(s):


Much environmental enforcement in the United States has historically relied on either self-reported data or physical, resource-intensive, infrequent inspections. Advances in remote sensing and computer vision, however, have the potential to augment compliance monitoring by detecting early warning signs of noncompliance. We demonstrate a process for rapid identification of significant structural expansion using Planet’s 3 m/pixel satellite imagery products and focusing on Concentrated Animal Feeding Operations (CAFOs) in the US as a test case. Unpermitted building expansion has been a particular challenge with CAFOs, which pose significant health and environmental risks. Using new hand-labeled dataset of 145,053 images of 1,513 CAFOs, we combine state-of-the-art building segmentation with a likelihood-based change-point detection model to provide a robust signal of building expansion (AUC = 0.86). A major advantage of this approach is that it can work with higher cadence (daily to weekly), but lower resolution (3 m/pixel), satellite imagery than previously used in similar environmental settings. It is also highly generalizable and thus provides a near real-time monitoring tool to prioritize enforcement resources in other settings where unpermitted construction poses environmental risk, e.g. zoning, habitat modification, or wetland protection.

Read More