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Expert elicitations are critical tools for characterizing technological uncertainty, since historical
data on technical progress may not provide a sufficient basis for forecasting future advances. The
objectives of this paper are to describe the protocol and results for an expert elicitation on the
future performance of gas-turbine-based technologies in the electric power sector and to discuss
how these insights relate to the current elicitation literature in energy modeling. Elicitation
results suggest that prospective efficiency gains are likely to be slower than historical trends;
however, the assessed values are still appreciably higher than the efficiencies used in many
energy models. The results also indicate that conducting face-to-face elicitations may be
important for minimizing overconfidence and for critically examining reported values, especially
when assessing non-central probabilities in the tails of a distribution.
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1. Introduction

Uncertainty analysis has played an increasingly prominent
role in energy modeling in recent years [1], particularly in
regard to technological change. This focus comes as no surprise
given that assumptions about how technologies evolve over
time are leading determinants of modeling results [2]. Despite
considerable unknowns about the dynamics of technological
change, it is necessary to quantify this uncertainty about cost
and performance metrics in a range of modeling settings.
Obtaining a set of potential outcomes and some idea of their
relative likelihoods is required nomatter if uncertainty analysis
is conducted implicitly (e.g., using sensitivity analysis or
propagating uncertainty through deterministic models) or
explicitly (e.g., through sequential decision-making frame-
works like stochastic programming). The interest in character-
izing technological uncertainty has grown in the presence of
proposed energy and climate policies to manage technical
change through research and development (R&D).

Although there are many formal methods of quantify-
ing uncertainty, expert elicitations are uniquely suited for
ll rights reserved.
characterizing technological uncertainty. Statistical approaches
that rely primarily on historical data may not contain sufficient
information to form conjectures about the future progress or
returns on research investments for specific technologies. Since
technological breakthroughs are fundamentally unique, plan-
ners often cannot extrapolate past trends into the future or use
relative historical frequencies to generate probability distribu-
tions. Thus, when past data are unavailable or of limited use,
one of the only remaining options is to ask individuals with
expertise for their best professional judgments, which often
take the form of expert elicitations [3].

An expert elicitation is a structured, formal process for
collecting and assessingprobabilistic estimates about uncertain
quantities [4]. These elicitations allow expert knowledge about
specific technologies to be embedded in models instead of
relying on stylized, ad-hoc distributions over parameters of
interest, which may be selected with limited consultation
about the current state of knowledge in a technical domain.

The objectives of this paper are to describe the protocol
and results for an expert elicitation on the future perfor-
mance of gas-turbine-based technologies in the electric
power sector and to discuss how insights from this work
relate to the current elicitation literature in energy modeling.
Section 2 briefly surveys the existing literature on energy
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technology expert elicitations and highlights the best prac-
tices and unresolved questions. Section 3 demonstrates these
elicitation techniques in the context of an overlooked technol-
ogy that merits greater attention—namely, natural gas turbine
architectures for stationary power generation. Section 4 pre-
sents the results of these elicitations, and Section 5 discusses
possible implications for modelers and decision-makers.

2. Energy technology expert elicitations

Considerable uncertainty about future states of energy
technologies suggests that it is important to collect expert
judgments about a range of possible outcomes instead of
focusing only on central tendencies. In this setting, analysts
cannot reliably assume that statistical analyses of historical
trends1 or technological analogs [8] will provide accurate
forecasts for the future evolution of energy technologies.
However, despite considerable uncertainty, probabilistic esti-
mates from a diverse set of experts, encoded through a
structured elicitation process, can offer valuable insights into
technological developments.

2.1. Existing work

Elicitations have been used for many decades to encode the
knowledge, judgment, and experience of experts in fieldswhere
uncertainty and risk are critical components of decision-making
[9,3,10]. Since work by Tversky and Kahneman [11], protocols
for elicitations have been carefully designed using insights from
psychology, decision analysis, risk analysis, economics, and
statistics to reduce distortions from cognitive biases and
heuristics. Many researchers have investigated the strengths
and shortcomings of various elicitation methods, and compre-
hensive overviews of the literature on the psychology of
probability assessment and on elicitation approaches have
been published [12,9,13–15,3,16].

This paper focuses on elicitation methods and applications
for quantifying future cost and performance characteristics of
energy technologies. The emphasis reflects the objectives of
surveying current practices and unresolved questions in this
policy-relevant area and also of applying these insights to
investigate the future performance of gas-turbine-based tech-
nologies in the power sector. Although probabilistic elicitations
have been applied across a range of industries and research
domains [12,17–20], the application of elicitations to energy
technologies began in earnest only recently.2 The limited
research attention may come as a surprise given the pervasive-
ness of uncertainty in this domain and early interest in such
analysis.3

For energy modeling, existing research uses elicitations to
explore the future of several specific supply- and demand-side
1 Frequently employed methods for projecting unit cost or performance
characteristics using historical trends include regression analysis [5],
decomposition [6], and monitoring for precursors [7].

2 Multi-criteria decision analysis methods have used expert judgments to
analyze energy technology decisions for many years [21–24], though such
elicitations do not typically focus on probabilistic assessments for a small
number of attributes.

3 The Rasmussen report [25] on nuclear reactor safety is a prominent early
example and the first to use quantitative expert judgments in a large risk
analysis [26].
technologies. Themost commonobjective is to informquestions
of energy R&D policy, which has tremendous uncertainty about
ex-ante returns on investments. The product of these elicita-
tions is a rich set of data that encodes experts' best probabilistic
judgments about future cost and performance characteristics for
specific technologies conditioned on R&D effort and outcomes.

Table 1 shows a non-exhaustive list of major energy
technology elicitations in recent years. The five institutions
conducting widespread elicitation research across multiple
energy technologies are Carnegie Mellon University, the US
Department of Energy's Office of Energy Efficiency and Renew-
able Energy (EERE), Fondazione Eni Enrico Mattei (FEEM),
Harvard University, and the University of Massachusetts
Amherst.

• Carnegie Mellon University: Researchers from the Depart-
ment of Engineering and Public Policy conducted elicitations
in a range of decentralized studies for amine-based carbon
capture [27], photovoltaic solar [28], and small modular
reactors [29].

• Office of Efficiency and Renewable Energy (EERE): Researchers
conducted elicitations for 40 renewable energy and efficiency
technologies to support R&D portfolio management deci-
sions using the Stochastic EnergyDeployment System (SEDS)
model, which has a Monte Carlo simulation framework.
Affiliated researchers include Sam Baldwin (EERE), Max
Henrion (Lumina), Thomas Jenkin (NREL), and Jim McVeigh
(NREL).

• Fondazione Eni Enrico Mattei: Valentina Bosetti and colleagues
conducted elicitations for many energy technologies within a
European context as part of the ICARUS projectwith a focus on
the impacts of R&D [30,31].

• Harvard University: Laura Diaz Anadon and colleagues from
the Energy Technology Innovation Policy Research Group
within the Belfer Center for Science and International Affairs
at Harvard's Kennedy School conducted elicitations in support
of the research and publication of their Transforming US Energy
Innovation report [32].

• University of Massachusetts Amherst: Erin Baker and colleagues
conducted elicitations for a variety of energy technologies,
including nuclear [33], CCS [34], solar [35], battery technolo-
gies for vehicles [36], cellulosic biofuels [37], and CCS energy
penalties [38].

There have also been efforts to make elicitation results
more accessible and to compare and aggregate their insights.
Megajoule.org is a website spearheaded by Max Henrion
for sharing and reviewing elicitation results. The Technology
Elicitations and Modeling Project (TEaM) is developing an
integrated framework for analyzing and communicating the
results from energy technology elicitation efforts. A related
collaboration between Harvard and FEEM researchers com-
pares US and EU elicitations for the future of nuclear power
[39].

2.2. Discussion of unresolved questions

Given the costly and time-consuming nature of elicitations,
it is important to identify and understand the factors that
enhance their quality and usefulness. This section highlights
unresolved questions from the literature on energy technology



Table 1
Existing literature on energy technology expert elicitations.

Carnegie Mellon EERE FEEM Harvard UMass Amherst

Supply–side technologies

Nuclear 30 25 4

Coal with CCS 10 13 4

Gas with CCS 13

Bioenergy and biofuels 15 8 6

Solar 18 16 11 3

Wind

Grid–scale storage 25

Demand–side technologies

Vehicles 9 7

Energy efficiency 9

Policy and/or R&D scenarios Yes Yes Yes Yes Yes

Elicited years 2015 (CCS)           

2030, 2050 (solar)

2006–2012 2008–2010 2011–2012 2008–2012

2015, 2020, 2025 2010, 2030 2010, 2030 2020, 2050

Year(s) conducted/published 2011

Protocol method Mail (CCS); 

combined mail/online, 

and face–to–face 

(solar)

Unknown Combined online 

and group (nuclear); 

face–to–face 

(biofuels, solar)

Mail Mail/online (nuclear, 

solar, vehicles), 

combined mail/online, 

face–to–face, and 

phone (CCS, biofuels)

Context US US EU US US

Associated model(s) N/A SEDS WITCH MARKAL MiniCAM/GCAM

NOTE: Colored cells indicate, for a given research group, whether elicitations for a particular technology were not conducted (white), conducted (light orange), or
conducted with published data (light blue). The values inside of technology cells indicate the number of experts included in the study (where available).
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expert elicitations and discusses the implications of these
issues for modeling results based on such elicitations.
2.2.1. In-person elicitations, conditioning, and tail events
Perhaps the most significant discrepancy between elici-

tation protocols is the method of administering elicitations
and whether it is preferable to conduct them in person or at a
distance.4 Although at-a-distance methods are more eco-
nomical and may allow greater participation, face-to-face
elicitations have typically been preferred in the broader
elicitation community due to a belief that such protocols
yield higher-quality outputs [40,28,41]. Face-to-face elicita-
tions allow interviewers to recognize and resolve sources of
ambiguity or inconsistencies in responses, to challenge the
expert with disconfirming evidence from the literature to
have greater confidence that a complete range of possibilities
is taken into account, to establish greater rapport, and to
ensure that the expert is giving his or her full attention to the
assessment task [40].

One of the largest concerns about at-a-distance elicita-
tions is that experts may be conditioning their responses on
unspecified events. For instance, results of a recent elicitation
for nuclear technologies [39] demonstrate how experts
believe that capital costs for Generation III/III+ reactors in
2030 would be higher than at present. However, questions
remain about whether this increase is due to forgetting curve
effects, commodity price escalations, regulatory costs, or
another random variable. Aggregate elicited values like price
4 Although there is disagreement about how to conduct individual
elicitations, there is broad agreement among energy technology research
groups that individual elicitations are preferable to group methods. This
sentiment aligns with recommendations in the elicitation literature, which
caution against biases associated with group dynamics that can inhibit
dissenting options [14].
changes are causally overdetermined. It is impossible to
decompose an expert's response to assess their beliefs about
which factors influenced their responsemostwithout the ability
to ask follow-up questions to determinewhat is implicitly being
conditioned upon (e.g., depreciation of knowledge capital,
increasing steel prices, inflation). Experts' mental models play
central roles in the elicitation process [42], but such models are
inaccessible without the “interactive and iterative” [38] feed-
back between the elicitor and the expert. Although feedback
steps can mitigate some of these challenges for mail or digital
elicitations, it is considerably easier to request feedback in an
in-person setting and to reassess values immediately if it is
discovered that the expert is conditioning on something that the
interviewer does not intend.

One method of avoiding these omitted variable biases while
retaining the convenience and cost reductions of at-a-distance
elicitations is to make more use of innovative electronic
techniques for conducting elicitations. Web-based interactive
interfaces for authoring and hosting elicitations like those used
byNear Zero allow formore feedback froman expert conditional
on their responses. In general, experimenting with newer
elicitation techniques, particularly in ways that utilize digital
tools and combine well-documented best practices from
different methods, can improve the quality of elicitations over
time. For instance, Anadon et al. [39] use a novel, two-phase
approach for conducting nuclear elicitations that begins with
interactive online elicitations and a group meeting afterward.

A related issue surrounds the most effective means of
assessing non-central probability estimates like the 10th and
90th percentiles. In the domain of energy technologies, the
probabilities of extreme upside events (e.g., low capital costs
resulting from technological breakthroughs, which may lead to
wide deployment of a particular technology) and improbable
downside events (e.g., unexpectedly large costs that result from
an inability to surmount engineering hurdles) are important to
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assess properly. However, assessing extreme tail values can be
problematic owing to a host of cognitive biases, which impede
careful consideration of low-probability events [11]. The most
common bias is the overconfidence effect, which leads to
systematic underestimations of tail events. A failure to identify
or correct overconfidence can result from not having an
interviewer interact with and question an expert in real time
(e.g., not giving feedback about egregiously narrow distribu-
tions). Debiasing is particularly challenging for the overconfi-
dence effect. Probability estimates may still exhibit this bias
even when assessors are knowledgeable about its existence,
which means that simply providing an information packet
before elicitations may not be enough to safeguard against
excessively narrow distributions.
2.2.2. Selection of experts
The identification and selection of experts may be nearly

as important as the design of the protocol itself. Althoughmany
technological elicitations are conducted to gain probabilistic
information about future costs and performance characteristics,
requesting cost and performance values from the same experts
can be problematic. The Catch 22 of cost-related technological
elicitations is that experts must be able to assess the probability
of meeting specific cost targets, which requires a detailed
understanding of the technology; however, technical experts
may be less familiar with the factors that influence costs. The
task of predicting costs is as complex as forecasting technolog-
ical breakthroughs, because a technology's cost depends on
many interrelated factors like prices of commodities, specific
manufacturing processes that are used to produce the technol-
ogy, the technology's design, learning effects, and economies of
scale.

Since scientists and engineers may not be the most
appropriate candidates to assess these economic values, it is
important to elicit additional values from economic or industry
specialists who have a familiarity with specific technologies.
This aligns with the general best practice of encouraging
elicitationswith experts from awide range of backgrounds and
viewpoints to avoid bias [14,43]. Another method of overcom-
ing this limitation is to elicit only cost values from cost experts
and technology performance values from technology experts.
Although this would reduce the efficiency of the elicitation
process, it would likely provide better quality results. Current-
ly, there has been a tendency to elicit many values at once
instead of concentrating on a few parameters, which may be
negatively impacting elicitations.

The elicitation literature also suggests that it is important to
have a cross-section of experts from industry, government
laboratories, and academia.5 This insight has largely been
incorporated in all elicitations, though little work has been
done to determine which types of experts provide the most
reliable elicitation values. Preliminary research [39] suggests
that experts from industry are more pessimistic about future
costs than experts in public institutions (with academics being
5 As Morgan et al. [40] note, selecting experts differ from the process of
estimating an underlying true value through random sampling. For expert
elicitations, “it is entirely possible that one expert, perhaps even one whose
views are an outlier, may be correctly reflecting the underlying physical
reality, and all the others may be wrong.”
the most optimistic).6 There is also recognition that expert
opinions may differ by country and that it is important to
conduct elicitations with global experts.7
3. Natural gas turbine elicitations

3.1. Motivations

Recent advances in technologies like horizontal drilling and
hydraulic fracturing have caused rapid increases in production
from unconventional natural gas resources like shale forma-
tions. However, the same technologies that have facilitated this
growth have also raised important questions about their
environmental impacts. Natural gas is broadly considered a
more environmentally benign alternative to coal due to its
lower CO2 emissions from combustion and its avoidance of
pollutants like sulfur, particulate matter, and mercury. These
environmental benefits, combined with abundant reserves,
suggest that unconventional gas can play an important role in
national and international energy policy—bridging a transition
to a lower-carbon economy, reshaping energy security, and
altering investment decisions in the electric power sector
[44,45].

Although abundant gas resources suggest expanded use
in the electricity sector, uncertainty about the environmental
impacts of production and long-run production costs makes
the extent of this growth unclear [46,47,45,48,49]. Addition-
ally, natural gas price uncertainty will be influenced by the
unknown policy environment, public acceptance of hydraulic
fracturing [50], and uncertainty surrounding life-cycle emis-
sions [51,52].

Another relevant uncertainty that will shape the role of
natural gas in the electric power sector is the future perfor-
mance of gas-turbine-based technologies. In particular, first-law
efficiencies of these technologies (bothwith andwithout carbon
capture) may determine the diffusion of new capacity and
market share of generation from natural gas. Such characteris-
tics are especially important for a technology subject to large
fuel price volatility and to similar levelized electricity costs as
other technological substitutes, which mean that even small
efficiency changesmay havemodest impacts on future diffusion
and utilization of these technologies.

The goal of this elicitation is to investigate the best practices
described above through a case study of a policy-relevant
technology that has been hitherto neglected in the energy
technology elicitation literature. In particular, the aim of this
work is to represent the current state of knowledge regarding
the future of gas turbine systems for new central station
electricity generation. As Table 1 suggests, most elicitations for
fossil-based electricity generation technologies have focused
on coal with CCS, and when research groups look at gas with
CCS, it is typically to encode uncertainty about capital costs.
Here, expert judgments about the first-law efficiencies of
6 This effect may potentially be due to a range of factors, including
industry experts being most familiar with market barriers or academics'
first-hand knowledge of cutting-edge technologies that are only on the brink
of commercialization.

7 The first paper to explore this issue [39] indicates that there are
significant differences between expert opinions in the US and EU.
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commercially viable natural-gas-fired power plants are elicited.8

In the absence of this approach, most energy-economic
models simply assume that future plant efficiencieswill remain
constant at current levels (with combined cycle efficiencies
between 50 and 60%) or will marginally increase between now
and 2050, as shown in Fig. 1. Even slight deviations from these
efficiency values can have significant impacts on the develop-
ment and deployment of gas-turbine-based systems, particu-
larly when natural gas prices and climate policy are uncertain
and there are many substitute technologies and fuels.
3.2. Protocol summary

The elicitation protocol for this study was designed by
drawing on the literature on techniques to minimize bias in
probabilistic assessments [9,14,43,3,10] while addressing the
issues raised in Section 2.2. The protocol emphasized robust
suggestions for best practices like conducting in-person
elicitations, carefully defining all terms and metrics, informing
experts about common biases and strategies to avoid them
(along with warm-up exercises and reminders during the
elicitation discussion), and using visualization tools to facilitate
quantification.

The elicitation focused on commercially viable natural-
gas-fired power plants with the highest available first-law
efficiency in 2025. This gas-turbine system should be scalable
to a plant size of 500 MW and must be compliant with
Clean Air Act regulations. Although the stochastic model in
which this information is used contains fossil units with and
without carbon capture, the elicitations considered only
systems without carbon capture. These efficiency values are
for commercially viable gas turbine technologies only, which
is defined as having a total overnight capital cost of the
system being less than or equal to $1000 per kilowatt.9

The description of this plant was intentionally general to
allow for the possibility that future gas-fired systems may
be very different from the most commonly implemented
baseload plants today, which are typically combined cycle
Brayton-architecture gas turbines with bottoming steam
engines. For instance, next-generation combined cycle archi-
tectures may use a gas turbine as a bottoming engine in a
solid oxide fuel cell, gas turbine combination. The decision to
elicit values for a single technical parameter allowed the
technological experts to focus on areas within their primary
domain of expertise. Restricting attention to a single value
also allowed for a more in-depth discussion of how the
expert viewed the history and future status of the field,
which can take many hours.10
8 Results from these expert elicitations are used as inputs to a stochastic
modeling framework, which assists decision-makers in the US electric
power sector with capacity planning and energy technology R&D portfolio
optimization under a range of technological, economic, and policy-related
uncertainties.

9 Expressed in terms of 2010 US dollars. This value reflects the
approximate future cost of a natural gas combined cycle unit according to
the Energy Information Administration's 2012 Annual Energy Outlook. The
phrase “commercially viable” is used to indicate that the technology is cost-
competitive with other forms of baseload electricity generation.
10 The average elicitation session took three hours with the shortest lasting
about two hours.
The second portion of the elicitation aimed to understand
how enhanced public and/or private R&D programs in the US
may impact the efficiencies of these technologies. There are
many ways to conceptualize the success of R&D projects [53].
Success can be viewed as the increased (binary) likelihood of
success in reaching fixed technical or cost metrics [35] or as
an acceleration in the number of years required to reach such
metrics [54]. The research framework here conceptualizes
R&D success as adjusting the range of expected cost and
performance metrics. The versatility of this probabilistic
framework allows for a diverse range of representations
within a stochastic programming setting, including shifting
the mean of a distribution over a target R&D parameter
(e.g., capital costs), changing the variance, or eliminating fat
tails (e.g., eliminating the possibility that a technology is
always too expensive for deployment).

Since the selection of experts is nearly as important as the
protocol itself, experts were recruited from a range of
backgrounds in industry, national laboratories, and academia.
Following a literature review, experts were contacted who
had technological familiarity with gas-turbine architectures
for stationary power generation with a preference for experts
who could meet for in-person elicitations, who had strong
technical expertise (since the focus was a technical param-
eter), and who are in the US. Quality control to ensure
expertise was managed on the front end as assessors were
being selected so that combining distributions later would
not entail subjective weights. Table 2 lists participants in the
elicitations in alphabetical order.

Each expert received a packet in advance of the interview,
which clearly defined the quantity of interest, discussed
common biases, and provided a general overview of the
elicitation process. The design of the elicitation protocol
was based on the Stanford/SRI Assessment Protocol11 with
modifications from the literature:

1. Motivating and Briefing: Each session began by discussing
the structure of the elicitation, by providing background
about the research and how the results will be used, and by
answering the expert's questions about the elicitation
process. The briefing helped experts understand the elicita-
tion approach, to establish a sense of rapport, and to
demonstrate that the elicitation was useful and worthy of
serious effort.

2. Structuring: The next stage began by arriving at an unambig-
uous definition of the quantity of interest (expressed in
manner that was conducive to the expert providing accurate
judgments) and by determining if there were any condition-
ing factors that may influence the value of the quantity. This
stage led into an extended technical discussion to understand
how the expert saw the past, present, and future of the field.
Also, this discussion allowed the experts to convey which
evidence seemed most compelling and which factors and
functional relationships were important for understanding
the future of gas-turbine systems for power generation. This
11 This section summarizes the primary steps and draws attention to
modifications of the standard Stanford/SRI Assessment Protocol. Other
authors [10,3] provide extensive information about the standard SRI
Protocol.
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stage of the pre-encoding processwas often the longest in the
elicitation process [10].

3. Conditioning: The objective of this step was to condition
the expert to think deeply about his or her judgment and
to avoid the cognitive biases discussed in the information
packet. This stage incorporated a series of warm-up
questions to familiarize the expert with the concepts,
structure, and techniques of the elicitation process and to
get them thinking in terms of probabilities. This portion of
the elicitation beganwith “almanac questions” for unrelated
quantities and then moved to more domain-specific
questions related to gas turbines.

4. Encoding: This stage involved the actual probability
encoding process for the quantities of interest. The step
began by establishing maximum and minimum credible
values and by probing the expert to think carefully about
these extreme values (e.g., asking for backcasts through
bounding cases, where experts had to invent plausible
explanations forwhy the true value could be lower or higher
than their initial range). Once this range was chosen,
cumulative probability values were elicited largely using
fixed-value methods with consistency checks using fixed-
probability questions. During this process, carefully articulat-
ed justifications and reasons for and against their judgments
were requested.
Table 2
List of experts and affiliations from the gas turbine elicitations.

Name Affiliation

Leonard Angello Electric Power Research Institute
Chris Edwards Stanford University
Dale Grace Electric Power Research Institute
Sankaran Ramakrishnan Stanford University
5. Verifying: The objective of this final step was to test the
quantitative judgments that the expert provided to ensure
that the values accurately reflected their beliefs. The
values given by the expert were recorded in a spreadsheet
so that the results could be instantaneously plotted as
both probability density functions (PDFs) and cumulative
distribution functions (CDFs). Any remaining inconsis-
tencies were resolved through conversation and iteration.

The elicited values from individual experts were later
combined to summarize the current state of expert opinion in
an aggregated manner. Although there are many diverse
mathematical combinations and justifications for these
methods [55], the linear opinion pool method was used
with equal weights attached to each expert's input. There are
many convenient axiomatic justifications for this approach
[55] and evidence that simple combination procedures
produce combined probability distributions that perform as
well as those from more complicated Bayesian aggregation
methods [56]. As mentioned before, instead of using complex
calibration procedures or differential weighting, the experts
in Table 2 were selected with great care before requesting
their participation and then treated all experts equally
(i.e., weighting was performed up front when choosing
experts instead of post-processing individual elicitation
results).

Combined percentile values were later fitted to shifted
log-logistic distributions. These three-parameter distribu-
tions are versatile enough to represent a range of different
shapes of distributions while offering a convenient way of
using the 10th, 50th, and 90th percentiles to parametrize the
distributions and a quantile function that is easy to use for
Monte Carlo experiments. For this work, the shifted log-
logistic distributions were used only as tools to visualize the
PDFs and CDFs for the elicited values.
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All elicitations were conducted between September and
October 2012.
4. Results

4.1. Efficiency elicitations

Fig. 2 shows the CDF of elicited values for first-law
efficiencies12 in 2025 under the business-as-usual R&D scenar-
io. Individual values for all four experts are given alongwith the
combined and fitted CDF. Although the figure shows some
disagreement among the experts particularly for higher
efficiencies, it is notable that all experts agree that the median
efficiency value for 2025 will be at least 60%. Recall that Fig. 1
showed that only one existing energy-economic model has
an efficiency value that exceeds 60% through 2050.13 Thus,
existing models significantly underestimate performance
characteristics for future natural gas systems for electricity
generation.

The median first-law efficiency of the combined distribu-
tion is about 63%, as shown in Fig. 3. This figure compares
the compiled CDFs for the business-as-usual R&D case and
enhanced R&D case. These fitted values are shown as PDFs in
Fig. 4. Experts believe that targeted R&D programs can increase
the median efficiency from 63 to 68% and can increase the
variance of the distribution. The increased variance suggests
that the impact of research and production experience could be
that new knowledge begets more uncertainty and/or opens up
new possibilities for more dramatic efficiency improvements,
as discussed in the next section.
12 All efficiencies for the remainder of the paper are expressed on a lower
heating value basis.
13 The Siemens SGT5-8000H gas turbine achieved a world-record 60.75
percent efficiency in a combined-cycle configuration at the Irsching Power
Station in Bavaria, Germany in May 2011.
4.2. Discussion

The experts agree that efficiency improvements in the
coming decades will likely result from implementing existing
research ideas by taking them from the laboratory, lowering
costs, and implementing them at larger scales. Technological
advances in gas turbine design have historically come from
three sources: materials science and engineering advances,
cooling improvements, and new architectures [57]. The lengthy
technical discussions during the elicitations suggest that these
factors will continue to play some part in future efficiency
increases, though likely for different reasons than historical
gains. When asked about prominent uncertainties that could
influence the development of higher-efficiency turbine-based
generators, the consensus view among the elicitations is
that natural gas prices and environmental policies will play
significant roles. Higher (lower) gas prices are thought to
increase (lower) firms' motivation to make efficiency improve-
ments. Experts view environmental policies (e.g., a potential
federal climate policy) and regulations for emissions from
existing assets (e.g., particulate matter and mercury) as
important drivers for technical progress.

Progress in materials science has allowed turbine blade
materials tomove from conventional cast alloys in the 1960s to
more highly-specialized, single-crystal alloys today [57]. These
metallurgical advances have made high temperatures possible
in combustors and turbine components.Many experts view the
prospect of increasing turbine inlet temperatures and operat-
ing at higher pressure ratios as promising methods of raising
efficiency values in the near term, even though efficiencies
exhibit diminishing marginal returns for higher temperatures.
Turbine inlet temperatures are one of the largest sources
of competition between big gas turbine original equipment
manufacturers (OEMs). The top priority areas for future
materials research are reducing the cost of single-crystal alloys
that already exist in the near term and then developing
and commercializing ceramic and metal matrix composites in
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the longer term.14 However, although they agree about the
potential importance of ceramics, the experts disagree about
the prospects for the widespread use of ceramics over the next
decade.

Cooling techniques for gas turbines typically involve circu-
lating air or steam through hot turbine components. Techno-
logical progress for cooling cascaded as a series of spillovers
from military turbojet engines (where such techniques were
developed in the 1960s) to civilian aircraft two to three years
later, followed by diffusion to stationary power generation
in approximately five years [57]. Many experts agree that
spillovers from aerospace applications are unlikely to continue
at their historical rates, as the operating profiles are very
different between heavy-duty stationary gas turbines and
those used for aviation (e.g., different standards for monitoring
and reliability, material needs, environmental conditions, and
weight restrictions). Additionally, cooling techniques advanced
along with improvements in computer codes and models for
finite element analysis, heat transfer, and fluid dynamics, which
were useful in modeling intricate cooling pathways, tunnels,
and holes to facilitate heat transfer to the cooling fluid. The
experts acknowledge that blade cooling will be an important
source of temperature increases, particularly if materials science
progress slows, but did not mention improved computational
tools as a means of achieving these improvements.

Individual experts also suggest that first-law efficiency
improvements could arise from improving auxiliary loads of
the cycles themselves, from implementing more advanced
architectures (e.g., intercooling, reheating, wet cycles), and
from developing better heat exchangers.

The greatest disagreement between experts came in
elicitations and discussions surrounding longer-term trends
14 Ceramic materials can withstand heat and corrosion and allow for higher
inlet temperatures without cooling. In experimental applications as first-
stage blades and combustor liners, ceramics have managed to achieve 37-
degree Celsius temperature increases with associated efficiency gains of six
percent [57].
for gas-based architectures, especially for systems that
incorporated fuel cells. Experts agree that the high end of
the achievable and economic efficiency range is between 65
and 70% in the absence of dramatically new architectures.
Efficiencies in this range are viewed as technically feasible
but economically unlikely without enhanced R&D, which
would be unlikely to come from major OEMs due to a lack of
incentives for innovation or competition (outside of merely
increasing inlet temperatures). The prospect of an integrated
solid oxide fuel cell and gas turbine system is a highly
uncertain one, though a couple of experts suggest that
industry research might move toward this architecture in
10–20 years. On one hand, these systems may offer a
promising route to decarbonization, since fuel cells provide
an inherently high-efficiency approach to chemical separations
with very high separation rates. On the other hand, such
systems are currently only demonstrable at a laboratory level
and would face numerous hurdles to commercialization due to
concerns about the overall economics of the system, the
longevity of the fuel cell, the stability of the membranes, and
the ability to increase the packing density and decreasing size
by a factor of ten. Experts disagree about the likelihood of
achieving the required performance and cost targets for this
fuel cell system even with targeted R&D. This sense of
uncertainty about advanced turbine-based architectures and
technical progress in the mid- to long-term future accounts for
the large variance for the enhanced R&D distribution in Fig. 3.

As mentioned at the beginning of this section, it is not clear
prima facie whether future performance and cost trends for
turbine-based electricity generators will follow historical values.
Although there are many promising developments on the
horizon, there are also many reasons to doubt that historical
sources of technological change (e.g., spillovers from the
aerospace industry, rapid advances in computational fluid
dynamics, or increasing turbine inlet temperatures) will contin-
ue to be primary drivers of efficiency gains in the future.
Consequently, expert elicitations fill this void byproviding a basis
for forecasting future efficiency values for gas-based systems.
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Fig. 5 shows the historical values for combined-cycle
efficiencies in the US electric power sector between 1968 and
2003 [57]. A simple linear trendline, when extrapolated to 2025,
suggests that efficiencies would reach upward of 70%. Although
this efficiency falls within the 10th and 90th percentiles of the
elicitation values, themedian estimates under business-as-usual
and enhanced R&D conditions are notably lower than this
trendline. Thus, the expert elicitations support the conclusion
that prospective efficiency gains are unlikely to follow historical
trends. However, these median values are still appreciably
higher than the efficiencies used inmany integrated assessment
models from Fig. 1.
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expert elicitation values for the base R&D (red square) and enhanced R&D (orange
5. Takeaways and recommendations

In addition to the insights about the future of gas turbine
systems discussed in the previous section, these elicitations
illustratedmany best practices for conducting expert elicitations.

The largest takeaway was that face-to-face elicitations are
extremely useful in critically examining reported probability
values, particularly for the tails of the distribution. Feedback
questions for participants' responses make them think critically
about the values they give and force them to brainstorm how
extreme values may be lower or higher than their initial
impressions suggest. In one elicitation, a questionwas reframed
2000 2010 2020 2030

with a linear trendline. The values at 2025 represent the median combined
triangle) with the 10th and 90th percentiles shown with error bars.
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in three different ways before the expert noted the possibility of
using supercritical water injection in the combustor and revised
the efficiency estimate upward. During the debriefing sessions,
subjects reported discomfort in thinking about tail probabil-
ities and suggested that, without the interviewer's interven-
tion, they would have selected an anchor value and then
extrapolated to select other values. Additionally, the warm-up
exercises suggested that the experts were initially overconfi-
dent, as the actual number of “surprises” (i.e., values falling
outside of the 10th and 90th percentiles) was over twice as
high as the expected number of surprises in three of four cases.
Thus, based on these observations, future research should
examine to what degree at-a-distance elicitations exhibit
greater overconfidence compared with in-person protocols
and how interactive digital tools can bridge this gap if it exists.

Many other advantages of conducting in-person elicita-
tions were observed:

• In-person elicitations allow the interviewer to clarify mis-
conceptions that may not be noticed without asking probing
questions. This techniquewas invoked to determinewhether
an expert was conditioning on events that were not
discussed, to clarify specific instances of how experts can
avoid biases during the actual elicitation, and to resolve
a misunderstanding about the definition of cumulative
probabilities, which was discovered when the interviewer
noticed an inconsistency in the given values.

• Conducting an in-person elicitation indicates that the inter-
viewer cares about the quality of the elicitations and the
results of the assessment.

• Many subjects reported that they were more comfortable
eliciting the values face-to-face due to the ability to ask the
interviewer questions.

Ultimately, one of the largest benefits of the elicitation
process is that it gives modelers more opportunities to consult
technical experts who have the greatest experience and
familiarity with technologies. These experts also have knowl-
edge that energy-economic models may not capture but is
important to the development and deployment of technologies.
Since these insights typically come out in unstructured
conversation, at-a-distance elicitations bypass (or do not take
full advantage of) these deep interactions. This point also
implies that elicitations have an important role in energy
modeling even in a deterministic setting. For instance,
exogenous technological progress in deterministic models is
typically informed by engineering cost estimates, which should
rely on elicitations to assess expert opinion and to structure
sensitivities. No matter the model structure, elicitations can
helpmodelers to identify and avoid potential blind spots in the
planning process. This function is particularly salient for energy
modeling in the context of climate change, which prominently
features a few nascent technologies.15

Expert elicitations are as important for future modeling
efforts as they are for those in the present. Probabilistic
assessments preserve information about current beliefs for
use in the future, which means that formally capturing such
15 For instance, elicitations in Baker et al. [34] suggest that the prospects of
technical success for post-combustion carbon capture technologies are still
controversial among experts in the area, even though many energy models
take the availability of such technologies as given.
beliefs is necessary for hindcasting exercises. Therefore,
elicitations play an integral part in constructing information
management systems, improving models for decision sup-
port, and combating hindsight bias. These assessments are
likewise necessary for evaluating the dynamics of learning
[58,59] and for understanding why errant forecasts were
wrong [60]. Modelers should compare forecasts with evolv-
ing observations to determine trends in estimation errors and
to diagnose any systematic forecast biases.

A stochastic analysis is only as good as the probability
encoding process behind it. The usefulness of models and
elicitation processes would be enhanced if future research
compared face-to-face, online, phone, and written elicitations.
There are currently no empirical assessments ofwhether there is
an upward or downward bias tomoments of distributions based
onwhether elicitations are conducted in person or at a distance,
though the experience here suggests that at-a-distancemethods
likely underestimate tail probabilities. These experiments could
explore how interactive digital elicitation tools can bridge the
gap between in-person elicitations (which are recommended by
decision analysis practitioners) and at-a-distance paper elicita-
tions (which are prevalent due to their cost-effectiveness and
economies of scale). Answers to these questions are especially
relevant given the need for more frequent elicitations involving
rapidly changing technologies like solar, where it is important
to use techniques that can save time and money while not
compromising quality.
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