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INTRODUCTION 

Culminating in the Industrial Revolution, machines and tools replaced or 
assisted humans in performing physical tasks.1 Drills, engravers, weaving 
machines and the like employed machines’ physical advantages to free human 
beings from repetitive physical labor. In general, damage caused by such tools 
has been governed, since the middle of the 20th century, by the legal 
framework of products liability.2 Under this system the seller, manufacturer, 
distributer, or any other party in the distribution chain of a defective product is 
liable for the physical harm caused to the user or her property.3 Thus, victims 
of tools that have caught fire or come apart,4 of motor vehicles that have 
crashed,5 of food containing external undesired objects,6 etc., could all have 
brought successful products liability claims against the products’ manufacturers 
or sellers.  

Over time, and with the advance of technology, the products used by 
humans became more sophisticated. Machines were no longer used merely to 
replace humans in performing physical tasks. Instead their superior 
computational abilities were utilized to assist or replace humans in processing 
data. The electronic calculator, for example, allowed engineers, merchants, 

 

 1.  R.M. HARTWELL, THE INDUSTRIAL REVOLUTION AND ECONOMIC GROWTH 295-97 
(1971); Nick von Tunzelmann, Time-Saving Technical Change: The Cotton Industry in the 
English Industrial Revolution, 32 EXPLORATIONS ECON. HIST. 1, 8-13 (1995); see also 
STEVEN KING & GEOFFREY TIMMINS, MAKING SENSE OF THE INDUSTRIAL REVOLUTION: 
ENGLISH ECONOMY AND SOCIETY 1700-1850 68-97 (2001) (arguing that the adoption of 
technological measures compared to “hand technologies” was associated with more 
difficulties and inefficiencies than commonly perceived).  

 2.  Donald G. Gifford, Technological Triggers to Tort Revolutions: Steam 
Locomotives, Autonomous Vehicles, and Accident Compensation, 11 J. TORT L. 71, 117-18 
(2018). For an overview of products liability history, see generally JANE STAPLETON, 
PRODUCT LIABILITY 9-29 (1994). For further discussion on the development of the products 
liability framework, see infra Part II.  

 3.   RESTATEMENT (SECOND) OF TORTS § 402A (AM. LAW INST. 1965).  
 4.  See, e.g., Bilenky v. Ryobi Tech., 666 F. App’x. 271 (4th Cir. 2007) (affirming 

that the manufacturer of a lawn-tractor that caught fire and as a result killed its owner was 
liable under products liability); Bass v. Phoenix Seadrill, 562 F. Supp. 790 (E.D. Tex. 1983) 
(finding the manufacturer of a drilling rig that fell and struck plaintiff liable for damages, 
referring among other causes of actions to products liability). 

 5.  See, e.g., Collazo-Santiago v. Toyota Motor Corp., 149 F.3d 23 (1st Cir. 1998) 
(holding Toyota’s design of its air bags was defective); Gray v. Lockheed Aeronautical Sys. 
Co., 125 F.3d 1371 (11th Cir. 1997), vacated 524 U.S. 924 (1998), rev’d per curiam on 
other grounds 155 F.3d 1343 (11th Cir. 1998) (holding a military contractor liable for a fatal 
jet aircraft crash resulting from defective aileron servo); Four Corners Helicopters, Inc. v. 
Turbomeca, S.A., 979 F.2d 1434 (10th Cir. 1992) (applying strict liability on the engine 
manufacturer of a helicopter that crashed).  

 6.  See, e.g., Coca-Cola Bottling Co. v. Parker, 451 So. 2d 786 (Ala. 1984) (affirming 
verdict for plaintiff who swallowed particles of glass found in a soft drink bottle); Selens v. 
Wakefern Food Corp., No. CV044000648, 2005 WL 1331154 (Conn. Super. Ct. May 2, 
2005) (denying defendants motions to strike products liability counts associated with the 
existence of a plastic tab inside a chicken). 



2019] ALGORITHM OR A PRODUCT? 63 

accountants and other professionals to provide better and quicker outputs;7 
autopilots were installed in airplanes to improve flight safety through an 
automated system capable of processing huge amounts of information in split 
seconds,8 while cruise-control and auto-parking devices were similarly 
installed in cars.9 Despite the increasing level of “sophistication” of these 
machines and devices, manufacturers and sellers of these products were 
generally held to the traditional products liability legal framework,10 akin to the 
liability applied to “simpler” or “less sophisticated” products.11  

Technology is ever advancing, and in addition to relinquishing physical 
and computational tasks to machines, algorithms’ self-learning abilities now 
allow them to reach their own conclusions based on databases of previous 
cases.12 This in turn enables humans to both entrust machines with making 
complex decisions that until lately required human discretion and even replace 
professional human judgment in matters of expertise where there is no clear 
right or wrong answer.13 

In the field of law, for example, virtual attorneys—such as ROSS 
Intelligence’s cognitive computing platform that works with IBM’s Watson—

 
 7.  Electronic Calculators—Handheld, THE NAT’L MUSEUM OF AM. HISTORY, 

http://americanhistory.si.edu/collections/object-groups/handheld-electronic-calculators; Nick 
Valentine, The History of the Calculator, THE CALCULATOR SITE, 
https://www.thecalculatorsite.com/articles/units/history-of-the-calculator.php (last updated 
Mar. 24, 2014). 

 8.  M.C. Elish & Tim Hwang, Praise the Machine! Punish the Human! The 
Contradicting History of Accountability in Automated Aviation (Data & Society Research 
Institute, Comparative Studies in Intelligent Systems, Working Paper 1, May 18, 2015), 
http://dx.doi.org/10.2139/ssrn.2720477; Kyle Colonna, Autonomous Cars and Tort Liability, 
4 CASE W. RES. J.L. TECH. & INTERNET 81, 93-97 (2012). 

 9.  Ralph Teetor and the History of Cruise Control, AM. SAFETY COUNCIL (Dec. 10, 
2014); A Brief History of Cruise Control, FRONTIER CHRYSLER (Jul. 20, 2016), 
https://www.frontierchrysler.ca/history-cruise-control/; Stephanie Levis, Look, Ma, No 
Hands: Self-Parking Cars Take the Wheel, GEICO INS. (May 5, 2016), 
https://www.geico.com/more/driving/auto/car-safety-insurance/look-ma-no-hands-parking-
technology-takes-the-wheel.  

 10.  See, for example, Richardson v. Bombardier, Inc., No. 8:03-cv-544-T-31MSS, 
2005 WL 3087864, at *14 (M.D. Fla. Nov. 16, 2005), where plaintiffs (unsuccessfully) 
raised, among other things, manufacture defect claims pertaining to the autopilot system of 
an airplane that had crashed. Similar products liability claims were also raised in connection 
with a plane-crash in Moe v. Avions Marcel Dassault-Breguet Aviation, 727 F.2d 917 (10th 
Cir. 1984). For additional examples, see Colonna, supra note 8, at 91-102. 

 11.  Products liability may be imposed on the basis of strict liability, requiring only the 
showing of a defect of the product, regardless of fault. Other cases require negligence by the 
defendant for liability to apply. The type of products involved may affect the specific type of 
products liability applied. See infra Part II for a more detailed discussion. 

 12.  For further discussion on how “self-learning” works, see infra Part IV.  
 13.  As will be discussed in more detail, such decisions are based on probabilities, such 

that only in hindsight may it be discovered whether the decision was beneficial or damaging 
(and even then professional disagreements will probably arise as to the best course of action 
at the time the decision was made). 
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are utilized by law firms in conducting legal research,14 algorithmic ODR 
mechanisms solve disputes online (often without any human facilitator),15 and 
bail algorithms determine whether defendants awaiting trial may post bail to be 
released.16 Physicians, too rely more and more on algorithms in order to 
diagnose medical conditions and select optimal treatment.17 Meanwhile, 
algorithms significantly assist, or sometimes replace, tax advisors, company 
directors, and even priests. 18  

Yet advanced as such machines and algorithms may be, occasionally they 
are still bound to cause damage.19 A futuristic transition to a world of robo-
doctors, for example, could never achieve perfect rates of patient recovery, and 
some patients’ condition would inevitably deteriorate as a result of decisions 
made by algorithms. Litigants relying on strategic advice provided by ROSS 
Intelligence or the like, are also bound to lose cases or negotiations from time 
to time, while some of the individuals filing tax reports prepared by a virtual 
tax advisor would certainly still be subject to tax investigations and sanctions 
due to the algorithm’s choices. Indeed, where such decision-makers have 
already been put to test—in the field of driving—we have witnessed that 
advanced algorithms are not immune to reaching damaging decisions.20  

 
 14.  See, e.g., John Mannes, ROSS Intelligence Lands $8.7M Series A to Speed Up 

Legal Research with AI, TECHCRUNCH (Oct. 11, 2017), https://techcrunch.com/2017/10/11/ 
ross-intelligence-lands-8-7m-series-a-to-speed-up-legal-research-with-ai/; Anthony Sills, 
Ross and Watson Tackle the Law, IBM WATSON BLOG (Jan. 14, 2016), https://www.ibm. 
com/blogs/watson/2016/01/ross-and-watson-tackle-the-law. 

 15.  Michael Legg, The Future of Dispute Resolution: Online ADR and Online Courts, 
27 AUSTRALASIAN DISP. RESOL. J. 227 (2016). 

 16.  A.J. Wang, Procedural Justice and Risk-Assessment Algorithms 1 (June 21, 2018), 
https://ssrn.com/abstract=3170136. Cf. Tom Simonite, How to Upgrade Judges with 
Machine Learning, MIT TECH. REV. (Mar. 6, 2017), https://www.technologyreview.com/s/ 
603763/how-to-upgrade-judges-with-machine-learning/ (discussing how algorithms may 
assist judges to predict which defendants will fail to show to court). 

 17.  See, e.g., Vinod Khosla, Technology Will Replace 80% of What Doctors Do, 
FORTUNE MAG. (Dec. 4, 2012), http://fortune.com/2012/12/04/technology-will-replace-80-
of-what-doctors-do/; Alina Shrourou, Deep Learning in Healthcare: A Move Towards 
Algorithmic Doctors, NEWS MEDICAL: LIFE SCIENCES (Mar. 15, 2017), https://www.news-
medical.net/news/20170315/Deep-learning-in-healthcare-a-move-towards-algorithmic-
doctors.aspx. 

 18.  Richard Susskind & Daniel Susskind, Technology Will Replace Many Doctors, 
Lawyers, and Other Professionals, HARV. BUS. REV. (Oct. 11, 2016), https://hbr.org/2016/ 
10/robots-will-replace-doctors-lawyers-and-other-professionals; Sasha A. Q. Scott, 
Algorithmic Absolution: The Case of Catholic Confessional Apps, 11 ONLINE - HEIDELBERG 

J. OF RELIGIONS ON THE INTERNET 254 (2016). For a forecast on the percentage of actions 
currently performed by human professionals that could be replaced by automation see 
Automation Potential and Wages for US Jobs, MCKINSEY GLOB. INST. (Oct. 1, 2018), 
https://public.tableau.com/profile/mckinsey.analytics#!/vizhome/AutomationandUSjobs/Tec
hnicalpotentialforautomation. 

 19.  Be it damage caused as a result of sub-optimal decisions by the algorithm, or 
because the underlying circumstances made damage inevitable. See infra Part III.  

 20.  In March 2018, a self-driving Uber car in autonomous mode hit and killed a 
woman in Arizona. Sam Levin & Julia Carrie Wong, Self-Driving Uber Kills Arizona 
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Should the traditional products liability framework continue to apply to the 
new generation of decision-making tools, 21 those that replace human discretion 
and enjoy rising levels of “autonomy” and self-learning abilities?22  

 
Woman in First Fatal Crash Involving Pedestrian, GUARDIAN (Mar. 19, 2018), 
https://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-
arizona-tempe. Less than a week later, a Tesla vehicle running on autopilot crashed and 
killed its driver. Tesla Car That Crashed and Killed Driver Was Running on Autopilot, Firm 
Says, GUARDIAN (Mar. 31, 2018), https://www.theguardian.com/technology/2018/mar/31/ 
tesla-car-crash-autopilot-mountain-view. In May 2016, a Tesla driver died as the vehicles 
sensors failed to detect a tractor-trailer crossing the highway. Danny Yadron & Dan Tynan, 
Tesla Driver Dies in First Fatal Crash While Using Autopilot Mode, GUARDIAN (June 30, 
2016), https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-
driving-car-elon-musk. While the accident rate of autonomous vehicles is expected to drop 
significantly, accidents and fatalities cannot be avoided completely. JOHN VILLASENOR, 
BROOKINGS INST., PRODUCTS LIABILITY AND DRIVERLESS CARS: ISSUES AND GUIDING 

PRINCIPLES FOR LEGISLATION 6-7 (2014), https://www.brookings.edu/wp-content/uploads/ 
2016/06/Products_Liability_and_Driverless_Cars.pdf (“[V]ehicle automation technologies 
can perform amazingly well. But they aren’t perfect, and they never will be. Sometimes au-
tonomous vehicles will become involved in accidents due at least in part to a defect in the 
autonomous vehicle technology.”); see also Bryant Walker Smith, Automated Driving and 
Product Liability, 2017 MICH. ST. L. REV. 1, 18-20 (identifying several reasons why auto-
mated systems may not provide absolute safety). 

 21.  This Article does not distinguish between robotic decision makers or algorithmic 
decision makers that have no physical embodiment. Rather, it uses phrases such as 
“sophisticated systems,” “self-learning algorithms,” or “autonomous robots” 
interchangeably. This is because the Article focuses on the decision-making process of the 
system and is generally indifferent to the existence (or lack thereof) of any physical 
embodiment. In that context, legal scholars, such as Yale Law Professor Jack M. Balkin, 
have suggested that both algorithms and robots are similar members of the “Algorithmic 
Society” and might be treated alike. Jack M. Balkin, 2016 Sidley Austin Distinguished 
Lecture on Big Data Law and Policy: The Three Laws of Robotics in the Age of Big Data, 78 
OHIO ST. L.J. 1217, 1226 (2017). For further discussion on the decision to disregard the 
difference between algorithms and robots for the purpose of discussing applicable liability 
framework, see Karni Chagal-Feferkorn, The Reasonable Algorithm, 1 U. ILL. J.L. TECH. & 

POL’Y 111, 116-17 (2018).  
 22.  This question is of even greater importance due to the shift from “human-afflicted 

damages” to “algorithmic-afflicted damages” (caused precisely because machines now re-
place humans for increasingly more tasks), which enlarges the number of instances where 
said issue is expected to be invoked. In other words, technology now offers to shift decisions 
and actions from humans to machines, leading to a much larger share of cases that would 
potentially involve products liability claims. See Smith, supra note 20, at 30 (“[I]t is widely 
accepted that design issues will play a much greater role in automated driving crashes than in 
today’s conventional driving crashes.”). First, in certain fields technology dispenses with any 
human involvement. For example, while in the past damages associated with cleaning the 
house were the fault of a cleaning-person, the shift to cleaning robots will now invoke claims 
against a “product” or a “machine” once the cleaning has caused damage (such as the case 
where a cleaning robot in South Korea sucked up its owner’s hair while she was sleeping on 
the floor, mistaking it for dirt). Justin McCurry, South Korean Woman’s Hair ‘Eaten’ by Ro-
bot Vacuum Cleaner as She Slept, GUARDIAN (Feb. 8, 2015), https://www.theguardian.com/ 
world/2015/feb/09/south-korean-womans-hair-eaten-by-robot-vacuum-cleaner-as-she-slept. 
See also Colonna, supra note 8, at 102-04 (referring in general to the replacement of negli-
gent human drivers with hardware or software that have caused a car accident). Secondly, 
even when humans remain part of the process, and will merely be assisted by sophisticated 
algorithms, a larger share of the damaging decisions will be reached by algorithms rather 



66 STANFORD LAW & POLICY REVIEW [Vol. 30:61 

Several scholars have argued that certain sophisticated or autonomous 
decision-makers require treatment different from their traditional predecessors.  

Professor Jane Bambauer, for example, suggested that certain medical 
applications should be regulated similarly to how human doctors are 
regulated.23 Attorney Jessica S. Allain too compared IBM’s Watson units used 
in the medical field to a “consulting physician,”24 while attorneys Jason Chung 
and Amanda Zink likened it to a “medical student,” explaining that Watson was 
not a typical medical device and that the products liability regime would not 
suit it.25 Professor of Law and Health Science Ryan Abbott distinguished a 
conventional automobile from a driverless car, noting that it might warrant a 
separate treatment of scrutinizing its actions as compared with those of a 
reasonable human driver.26 In a previous paper I too argued that, in general, 
algorithms replacing a human’s professional judgment should be subject to the 
reasonableness standard that currently applies to humans, rather than being 
treated as a product.27  

The European Parliament, to give another example, has issued a report to 
the E.U. Commission on Civil Law Rules on Robotics explaining that ordinary 
liability rules are insufficient for autonomous robots, since they can no longer 
be considered tools in the hands of other actors.28 The report suggested 
granting autonomous robots an independent legal status of “electronic persons,” 
which might even allow these robots themselves to pay damages for the harm 

 
than the person; thus again, the focus is shifted from human fault to products liability. Smith, 
supra note 20, at 29-30, gives an example from the world of driving, where in the past dam-
aging decisions often stemmed from a combination of both human and machine failures. For 
instance, car accidents involving some sort of manufacture defect were frequently caused or 
made worse because, in addition to the car defect, the human driver was speeding or was act-
ing in some other form of faulty driving. Driverless vehicles, on the other hand, will them-
selves account for most or all real-time driving decisions, and any defect in their manufactur-
ing or design will therefore play a greater—or sole—role in future car accidents. 

 23.  Jane R. Bambauer, Dr. Robot, 51 U.C. DAVIS L. REV. 383, 393 (2017). 
 24.  Jessica S. Allain, From Jeopardy! to Jaundice: The Medical Liability Implications 

of Dr. Watson and Other Artificial Intelligence Systems, 73 LA. L. REV. 1049, 1062 (2013). 
 25.  Jason Chung & Amanda Zink, Hey Watson—Can I Sue You for Malpractice? 

Examining the Liability of Artificial Intelligence in Medicine, 11 ASIA-PAC. J. HEALTH L. & 

ETHICS 51, 68-70 (2018). 
 26.  Ryan Abbott, The Reasonable Computer: Disrupting the Paradigm of Tort 

Liability, 86 GEO. WASH. L. REV. 1, 37-39 (2018). 
 27.  See generally Chagal-Feferkorn, supra note 21. 
 28.  “[W]hereas the more autonomous robots are, the less they can be considered to be 

simple tools in the hands of other actors (such as the manufacturer, the operator, the owner, 
the user, etc.); whereas this, in turn, questions whether the ordinary rules on liability are 
sufficient or whether it calls for new principles and rules to provide clarity on the legal 
liability of various actors concerning responsibility for the acts and omissions of robots 
where the cause cannot be traced back to a specific human actor and whether the acts or 
omissions of robots which have caused harm could have been avoided.” European 
Parliament Resolution of 16 February 2017 with Recommendations to the Commission on 
Civil Law Rules on Robotics (2015/2103(INL)), EUR. PARL. DOC. P8_TA(2017)0051, ¶ AB, 
http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P8-TA-2017-
0051&language=EN&ring=A8-2017-0005 [hereinafter European Parliament Resolution]. 
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they cause (for instance, through a compulsory insurance scheme developed for 
specific categories of robots).29 The Committees on Transport and Tourism, on 
Employment and Social Affairs, and on the Environment, Public Health and 
Food Safety have all agreed that new liability rules ought to be developed to 
account for the new character of robotic decision makers.30 

Indeed, several regimes of liability rules have been offered in the context 
of such autonomous robots or systems. Many of them focus on the similarities 
between these systems and human beings, and propose to apply similar legal 
treatment to both, either by subjecting systems to the standards of 
reasonableness as discussed above,31 or by treating such systems as agents,32 
employees,33 or children34 for the purposes of applying tort liability on their 
manufacturers or users (similar to the tort liability that would apply to a 

 

 29.  “[C]reating a specific legal status for robots in the long run, so that at least the 
most sophisticated autonomous robots could be established as having the status of electronic 
persons responsible for making good any damage they may cause, and possibly applying 
electronic personality to cases where robots make autonomous decisions or otherwise 
interact with third parties independently.” Id. ¶ 59f. 

 30.  Opinion of the Committee on Transport and Tourism for the Committee on Legal 
Affairs with Recommendations to the Commission on Civil Law Rules on Robotic 
(2015/2103(INL)), EUR. PARL. DOC. A8-005/2017, ¶ B, http://www.europarl.europa.eu/sides/ 
getDoc.do?type=REPORT&reference=A8-2017-0005&language=EN#title4 (“[W]hereas, 
for the purpose of civil liability, a distinction should be drawn between automated vehicles 
(incorporating devices allowing the automatic execution of some driving operations) and 
autonomous vehicles (which perform all such operations); . . . whereas in the former case the 
civil liability regime remains unchanged compared to that with conventional vehicles, while 
it needs to be adjusted in the latter case.”); Opinion of the Committee on Employment and 
Social Affairs for the Committee on Legal Affairs with Recommendations to the 
Commission on Civil Law Rules on Robotic (2015/2103(INL)), EUR. PARL. DOC. A8-
005/2017, ¶ 4, http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference= 
A8-2017-0005&language=EN#title6 (“[C]onsidering the increasing level of autonomy of 
robots, this should be accompanied by amending the rules on liability concerning the 
consequences associated with the actions or inaction of robots; is concerned by the lack of 
general framework and legal provisions with regard to work automation in this new and 
ongoing industrial revolution and considers it to be essential for the Union to specify a legal 
framework that reflects the complexity of robotics and its numerous social implications.”); 
Opinion of the Committee on the Environment, Public Health and Food Safety for the 
Committee on Legal Affairs with Recommendations to the Commission on Civil Law Rules 
on Robotic (2015/2103(INL)), EUR. PARL. DOC. A8-005/2017, ¶ 26, http://www.europarl. 
europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0005&language=EN#title7 
(“[C]alls on the Commission and on the Member States to promote the development of 
assistive technologies, also through liability schemes that are different from those currently 
applicable, in order to facilitate the development and adoption of these technologies.”). 

 31.  See generally Abbott, supra note 26; Chagal-Feferkorn, supra note 21. 
 32.  See SAMIR CHOPRA & LAURENCE F. WHITE, A LEGAL THEORY FOR AUTONOMOUS 

ARTIFICIAL AGENTS 5-28 (2011); Peter M. Asaro, A Body to Kick, But Still No Soul to Damn: 
Legal Perspectives on Robotics, in ROBOT ETHICS: THE ETHICAL AND SOCIAL IMPLICATIONS 

OF ROBOTICS 169, 178-80 (Patrick Lin et al. eds., 2012); Sam N. Lehman-Wilzig, 
Frankenstein Unbound: Towards a Legal Definition of Artificial Intelligence, 13 FUTURES 

442, 451-52 (1981). 
 33.  Lehman-Wilzig, supra note 32. 
 34.  Id.; CHOPRA & WHITE, supra note 32, at 180. 
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principal, an employer or a parent, respectively). Other propositions focused on 
developing an insurance scheme adapted to the capabilities and potential 
danger posed by “sophisticated” or “autonomous” systems.35  

In any event, a preliminary question not yet discussed in depth is when the 
system becomes different than a ‘traditional product’ such that products 
liability is no longer a sufficient framework to treat damages caused by it.  

 Automated machines of different kinds were described in detail as early as 
800 years ago.36 Algorithms themselves date back more than 2,000 years.37 
What is it that separates these and other traditional algorithms and machines 
that have been, and may continue to be, subject to products liability rules from 
what I will generally refer to as “thinking algorithms” that seem to warrant 
their own custom-made treatment? Why have auto-pilots, for example, been 
traditionally treated as products38 while autonomous vehicles are suddenly seen 
as a more human-like system that requires different treatment? Where is the 
fine line drawn between products and decision-makers? 

While several scholars have touched on distinguishing traditional from 
sophisticated technologies for the purpose of applying products liability, no in-
depth discussion specifically on this question has yet been investigated. Rather, 
the discussions focused on different tort frameworks that ought to be developed 
for “sophisticated” or “autonomous” technologies, with only anecdotal 
references to what it is that renders such technologies “sophisticated” or 
“autonomous.” Moreover, the potential parameters that have been mentioned to 
classify such technologies indeed related to the system’s level of autonomy 
(while some referred to autonomy expressly,39 other scholars discussed 
whether the system is able to wholly replace humans40 or whether it 
outperforms humans41—all aspects are associated with the system’s level of 

 
 35.  European Parliament Resolution, supra note 28, ¶¶ 57-59. 
 36.  See generally IBN AL-RAZZAZ AL-JAZARI, THE BOOK OF KNOWLEDGE OF INGENIOUS 

MECHANICAL DEVICES (Donald R. Hill trans., Pakistan Hijra Council 1989) (1974).  
 37.  See generally The Euclidian Algorithm, KHAN ACAD., https://www.khan 

academy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-
algorithm (The Euclidean algorithm, for example, was invented around 300 BC and is still in 
use in existing technologies). Jeffrey Shallit, Origins of the Analysis of the Euclidean Algo-
rithm, 21 HISTORIA MATHEMATICA 401-19 (1994). 

 38.  The case of the 2013 Asiana Airlines crash in San Francisco is an example where 
the underlying legal actions consisted of products liability claims raised against Boeing, the 
manufacturer of the auto-throttle that allegedly failed. See Denise Johnson, Fingers Point to 
Different Defendants in Asiana Airlines Plane Crash, CLAIMS JOURNAL (Aug 6, 2018), 
https://www.claimsjournal.com/news/ national/2013/08/06/234344.html; Brett Snider, 83 
Asiana Passengers to Sue Boeing over Crash, FINDLAW (July 17, 2013), 
https://blogs.findlaw.com/injured/2013/07/83-asiana-passengers-to-sue-boeing-over-
crash.html. 

 39.  European Parliament Resolution, supra note 28. 
 40.  See generally Abbott, supra note 26 at 23. 
 41. Id. at 27-30, 39-41; see also Jason Millar & Ian Kerr, Delegation, Relinquishment 

and Responsibility: The Prospect of Expert Robots, in ROBOT LAW 102 (Ryan Calo et al. 
eds., 2016) (“[W]e suggest that a robot can be considered an expert when there is strong evi-
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autonomy, as will be discussed below). This Article, however, demonstrates 
that autonomy is not a desirable differentiator between products and thinking 
algorithms, given its excessive complexity, the likelihood said differentiator 
will yield absurd or inconsistent results, and the non-practical nature of the 
results obtained using autonomy as a differentiator. A Roomba vacuum robot, 
for example, does replace a person in its action of cleaning; it (arguably) does 
so in a manner that outperforms the human cleaner,42 and it possesses sufficient 
levels of autonomy that enable it to decide on its own which direction to turn in 
order to continue cleaning. Yet the Roomba is probably not a thinking 
algorithm in the sense of requiring a specially-tailored tort legal framework that 
would apply to it rather than the traditional products liability framework.  

This Article therefore proposes a new approach for distinguishing 
traditional products from “thinking algorithms” for the purpose of determining 
whether products liability should apply. Instead of examining the system’s 
characteristics in isolation, I propose a “purposive interpretation” approach: one 
that analyzes the system’s characteristics vis-à-vis the rationales behind the 
products liability legal framework, and identifies those associated with 
promoting said rationales versus ones adversely affecting the ability to 
accomplish them. The Article will thus offer a novel, practical method for 
differentiating traditional products from thinking algorithms, based on fulfilling 
the rationales behind products liability laws and hence provide decision-makers 
with tools to better decide when products liability should apply and when it 
should not.  

Part I explores the concept of autonomy in algorithmic decision-makers 
and shows why the different aspects of autonomy are insufficient for 
determining which systems should and which should not be subject to products 
liability laws. Part II provides background to the legal framework of products 
liability and its rationales. Part III then addresses a more preliminary discussion 
of whether thinking algorithms even fall within the realm of products liability, 
given that they do not necessarily reflect a product and that damaging decisions 
reached by them are not necessarily the result of a defect. Part IV analyzes how 
different characteristics of sophisticated systems affect the ability to fulfil the 
rationales behind the products liability framework. It therefore points out the 
characteristics that render the accomplishment of these rationales more difficult 
to achieve, and demonstrates which specific system might indeed warrant a 
different legal treatment. Part V mentions alternative suggestions to imposing 
liability on damages caused by advanced technology and concludes that in 
either event, a preliminary step is evaluating if indeed the system calls for such 
an alternative or may continue to be subject to existing tort frameworks.  

 
dence that it is capable of consistently performing a well-defined set of tasks traditionally 
associated with human expertise, with results that are, on average, better than the average 
human expert.”).  

 42.  Though not of statistical significance, it certainly outperforms the author of this 
article. 
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PART I: WHY NOT USE AUTONOMY TO DISTINGUISH PRODUCTS FROM THINKING 

ALGORITHMS? 

A. On Automation and Autonomy 

In the context of the recent calls to develop a specialized tort legal 
framework for “sophisticated” or “autonomous” technologies, it is important to 
remember that automated machines, characterized by different levels of 
sophistication, have been utilized by humankind for centuries.43 In addition to 
open-loop control systems, which executed automated tasks on an injective 
predetermined and unchangeable trajectory,44 closed-loop control systems have 
for centuries been capable of automatically choosing among predetermined 
options, based on real-time feedback. Open-loop control windmills, for 
example, employed the power of wind to grind grain automatically whenever 
the wind blew. So long as the system was intact it would continue 
automatically to grind the same predetermined amount of grain on windy days, 
over and over again.45 Closed-loop control windmills, however, were also able 
to increase the output of the windmill by automatically enlarging the amount of 
grain poured into the mill as the wind blew stronger (based on a hopper 
suspended on ropes that received more “knocks” the stronger the wind blew, 
and automatically caused more grain to be dispensed).46 Modern examples of 
closed-loop automation systems are ubiquitous. They include Roomba vacuum 
robots (altering their routes on the ground based on feedback such as striking 
obstacles);47 automated parking systems (basing their motion on feedback 
received by their sensors and cameras)48 or even automated snore stopper 
pillows (a microphone embedded in the pillow identifies sounds of snoring, and 
based on that feedback automatically inflates the pillow to change the snorer’s 

 
 43.  IBN AL-RAZZAZ AL JAZARI, supra note 36. See also Automation, MERRIAM-

WEBSTER, https://www.merriam-webster.com/dictionary/automation (last visited Aug. 5, 
2018) (“1: the technique of making an apparatus, a process, or a system operate 
automatically; 2: the state of being operated automatically”); Automatic, MERRIAM-
WEBSTER, https://www.merriam-webster.com/dictionary/automatic (last visited Aug. 5, 
2018) (“2: having a self-acting or self-regulating mechanism”). 

 44.  JOSEPH DISTEFANO ET. AL., SCHAUM’S OUTLINE OF THEORY AND PROBLEMS OF 

FEEDBACK AND CONTROL SYSTEMS 3-4 (1990).  
 45.  Id.; see also OTTO MAYR, THE ORIGINS OF FEEDBACK CONTROL 6, 90-93, 129-31 

(1970). A boiler set by timer to turn on at a certain timing is an example of a modern open 
loop control mechanism, as the automation of turning the boiler on is independent of any 
variable other than the timing which was originally set. 

 46.  Id. at 90-93. A boiler operating with a thermostat is a closed loop control 
mechanism, as its continuous operation depends on feedback pertaining to the current water 
temperature. 

 47.  Julia Layton, How Robotic Vacuums Work, HOWSTUFFWORKS (Nov. 3, 2005), 
https://electronics.howstuffworks.com/gadgets/home/robotic-vacuum2.htm. 

 48.  Laura McQuarrie, The Valet Park4U Is a Smart Self-Parking System from Valeo, 
TRENDHUNTER (June 3, 2014), https://www.trendhunter.com/trends/automatic-parking. 
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posture).49 Countless other old and new closed-loop control systems allow us to 
enjoy the benefits of automation daily.50 The mere fact that the system adjusts 
its actions based on external feedback, however, has existed for generations and 
in itself certainly does not warrant legal treatment different from that of 
traditional products. What then might assist in making such a distinction? 

Legal scholars engaged in products liability and sophisticated systems have 
suggested various directions to answer said question. The above report by the 
European Parliament, for example, proposed defining a “smart robot” as one 
whose autonomy is established by its interconnectivity with the environment 
(potentially through the use of sensors), and its ability to adapt its action to 
changes in it.51 Millar and Kerr refer to “expert” robots, which would be 
classified as such when on average they consistently performed a well-defined 
set of tasks traditionally associated with human expertise—and do so better 
than the average human expert.52 Abbott focuses on the system’s ability to 
replace humans, more particularly on its ability to determine for itself how to 
complete tasks as set by humans.53 Bambauer separates applications based on 
mere “measurement” from applications whose function is “knowledge-
based”;54 Chung and Zink focus on the higher level of the system’s duties, 
which require abilities of interpretation and analysis, while also distinguishing 

 

 49.  Michael Plishka, Pillow Adjusts Your Sleep Position, TRENDHUNTER (Feb. 7, 
2014), https://www.trendhunter.com/trends/pillow-snoring-automatic. 

 50.  To mention a few amusing examples, automated doors for pets open automatically 
when receiving feedback indicating pet movement. Rahul Kalvapalle, The Petwalk Pet Door 
Is Both Pet-Friendly and Eco-Friendly, TRENDHUNTER (Mar. 14, 2014), 
https://www.trendhunter.com/trends/pet-door. Special utensils to reduce eating speed are 
available too; based on motion feedback received by the fork’s sensors, the utensil vibrates 
whenever the user is eating too fast. Jordan Minor, HAPIfork is a Smart Fork For Your 
Dumb Mouth, GEEK.COM (Aug. 2, 2018), https://www.geek.com/tech/hapifork-is-a-smart-
fork-for-your-dumb-mouth-1730322.  

 51.  Annex to the Resolution: Recommendations as to the Content of the Proposal 
Requested, EUR. PARL. DOC. P8_TA(2017)0051, ¶ AB, http://www.europarl.europa.eu/sides/ 
getDoc.do?type=TA&reference=P8-TA-2017-0051&language=EN&ring=A8-2017-
0005#BKMD-13. 

 52.  Though said definition may also suit a weaving machine replacing a human 
weaver in the nineteenth century, Millar and Kerr also explained that in general, experts are 
not measured by their ability to follow known instructions; instead they prove their expertise 
by “filling in the blanks” so that an identical set of instructions is more likely to succeed 
when performed by an expert, and more likely to fail when performed by someone else. 
Millar & Kerr, supra note 41, at 110. 

 53.  Abbott, supra note 26, at 23 (“What distinguishes an ordinary product from a 
computer tortfeasor in this system are the concepts of independence and control. 
Autonomous computers, robots, or machines are given tasks to complete, but they determine 
for themselves the means of completing those tasks.”). Interestingly, Abbott rejects the test 
of whether or not the machine’s actions were foreseeable as distinguishing traditional from 
autonomous products. Id. at 23-24 (“But the difference between ordinary products and au-
tonomous computers should not be based on predictability.”). 

 54.  Bambauer, supra note 23, at 387 (“Measurement apps will have traditional 
instruments as their nearest conceptual neighbor, while knowledge apps emulate doctors or, 
perhaps, the patients’ informal networks of health advisers.”). 
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different systems according to their ability to make decisions as well as 
implement them.55 

As the following review shows, these diverse and seemingly wildly 
different tests all relate to different aspects of the system’s autonomy, whether 
or not the term autonomy is stated expressly. The problem in classifying a 
system as a product or a thinking algorithm based on its level of autonomy, 
however, is the complexity of the term “autonomy,” which is much greater than 
might be intuitively assumed.56 Moreover, applying autonomy level or 
different aspects of it as a differentiator might in many cases lead to absurd or 
inconsistent outcomes—it merely provides an imprecise test whose results are 
not necessarily practical.  

B. The Many Faces of Autonomy 

Using autonomy level as means for distinguishing traditional products 
from thinking algorithms for the purpose of applying products liability laws is 
undesired. One of the reasons is that such a differentiator would be difficult to 
implement, as its level of complexity is excessively high.  

First, autonomy is a spectrum rather than a binary classification.57 As will 
be discussed below, autonomy consists of various attributes rather than a single 
one. In addition, many of these attributes—for example, the system’s 
adaptability to changing conditions—are in themselves measured on a scale and 
cannot be determined on a binary basis.  

Secondly, various spectrums of autonomy exist, each focusing on 
completely different aspects. One common measurement of autonomy is the 
system’s freedom to act without human involvement (or the allocation of 
decision-making power to humans or machine). Sheridan’s spectrum, for 
example, offers ten levels of autonomy, the lowest being a situation where all 
processes are accomplished by a human being, without any machine assistance; 
the highest level is where the machine selects the desired courses of action but 
also executes them, not even informing the human of its choice and ignoring 
the human altogether.58 Adding even more to the complexity of said spectrum 

 

 55.  Chung & Zink, supra note 25, at 77-78. 
 56.  See William C. Marra & Sonia K. McNeil, Understanding “The Loop”: 

Regulating the Next Generation of War Machines, 36 HARV. J.L. & PUB. POL’Y 1140, 1151 
(2013) (“Autonomy is a complex concept with many components that cannot be captured 
simply by parsing decision-making independence.”). 

 57.  Marra & McNeil, supra note 56, at 1158. 
 58.  The full list of Sheridan’s spectrum levels is as follows: “Level 1: The computer 

offers no assistance, human must do it all. Level 2: The computer offers a complete set of 
action alternatives. Level 3: Narrows the selection down to a few, or Level 4: Suggests one, 
and Level 5: Executes that suggestion if the human approves, or Level 6: Allows the human 
a restricted time to veto before automatic execution, or Level 7: Executes automatically, then 
necessarily informs the human. Level 8: Informs the human after execution only if the 
human asks, or Level 9: Informs the human after execution if it, the computer, decides to do 
so. Level 10: The computer decides everything and acts autonomously, ignoring the human 
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is that, even with identical systems employing identical technology, the 
division of tasks to those performed by humans and those offloaded to the 
system varies between particular scenarios. 59 A GPS system, for example, 
merely assists the driver in navigation when driving in a familiar neighborhood. 
But once the driver finds herself in unfamiliar surroundings, the same GPS 
suddenly does much more than occasional assistance. Rather, the allocation of 
decision-making power then changes such that the driver tends to accept the 
system’s directions without second-guessing it,60 even in cases where it is clear 
the driver should have overridden the GPS’s discretion.61  

A second method of assessing autonomy is based on the system’s ability to 
replace humans.62 This measurement is in itself branched and complex, as 
several sub-analyses have been suggested in that context. Most sub-analyses 
focus on the system’s ability to adapt to changing conditions, although the 

 
completely.” Marra & McNeil, supra note 56. In between levels 1 and 10 are levels where 
the machine does not execute actions without human approval; executes only after the 
human has had time to veto the action; executes and then informs the human, based on the 
human’s request or executes and then informs the human on the machine’s own discretion of 
whether to inform or not. Raja Parasuraman et al., A Model for Types and Levels of Human 
Interaction with Automation, 30 IEEE TRANSACTIONS ON SYS. MAN & CYBERNETICS— PART 

A: SYS. & HUMS. 286, 287 (2000). 
 59.  See generally Itiel E. Dror & Jennifer L. Mnookin, The Use of Technology in 

Human Expert Domains: Challenges and Risks Arising from the Use of Automated 
Fingerprint Identification Systems in Forensic Science, 9 LAW PROBABILITY & RISK 47, 47-
48 (2010) (“These technologies may distribute cognition in a number of ways: [t]hey can 
work to help and support the human expert; they can work alongside the human expert in a 
collaborative partnership; or the technology can play a more critical and significant role than 
the human.”). 

 60.  Id. at 49 (“If the person is in an unfamiliar city, we may think that . . . the human is 
‘subservient’ to the GPS, following the route uncritically without exercising independent 
judgment.”). 

 61.  For discussion of cases where GPSs sent drivers off a cliff, into a river, or to the 
wrong side of the street, see infra Part IV.  

 62.  See Automated Vehicles for Safety, NHTSA, https://www.nhtsa.gov/technology-
innovation/automated-vehicles-safety (outlining the Society of Automotive Engineers’ 
(SAE) spectrum for autonomous vehicles). Level 0 of the SAE spectrum is no automation, 
where human drivers perform all tasks required for driving. Level 5 is full automation where 
the vehicle itself is capable of performing all driving functions under all circumstances. In 
between, automation (not autonomy) is used as a tool that increasingly assists the human 
driver. The full list of the SAE’s spectrum levels is as follows: Level 0: No Automation. 
Zero autonomy; the driver performs all driving tasks. Level 1: Driver Assistance. Vehicle is 
controlled by the driver, but some driving-assist features may be included in the vehicle’s 
design. Level 2: Partial Automation. Vehicle has combined automated functions, like 
acceleration and steering, but driver must remain engaged with the driving task and monitor 
the environment at all times. Level 3: Conditional Automation. Driver is a necessity, but it is 
not required to monitor the environment. Driver must be ready to take control of the vehicle 
at all times with notice. Level 4: High Automation. Vehicle is capable of performing all 
driving functions under certain conditions. Driver may have the option to control the vehicle. 
Level 5: Full Automation. Vehicle is capable of performing all driving functions under all 
conditions. Driver may have the option to control the vehicle. SAE’s highest level of 
automation therefore still grants the human driver discretion to maintain or take control over 
the vehicle. 
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specific tests vary significantly. They include the relatively simple test of 
whether the machine is limited to choosing among pre-programmed options or 
is capable of choosing options that are not fully pre-programmed.63 They also 
include more complex tests, namely if the following three attributes of 
autonomy are met: frequency of human operator interaction, machine’s 
tolerance for environmental uncertainty and level of assertiveness of the 
machine.64 Another approach focuses on whether the system is able to perform 
all the following types of activity: skill-driven, rules-driven and knowledge-
driven.65 

A third method for evaluating autonomy refers to a stronger or substantial 
measure of autonomy that will probably be developed more in the future, 
focusing on the system’s own cognitive-awareness and real freedom of 
choice.66 The spectrum proposed by the Air Force Research Lab (AFRL), for 
example, refers at the highest levels of autonomy to systems that are cognizant 
of their environment and not merely possess “knowledge” on it.67  

 
 63.  Kenneth Anderson & Matthew Waxman, Law and Ethics for Autonomous Weapon 

Systems: Why a Ban Won’t Work and How the Laws of War Can, HOOVER INSTITUTION: 
JEAN PERKINS TASK FORCE ON NATIONAL SECURITY AND LAW 5-6 (May 17, 2013), 
http://media.hoover.org/sites/default/files/documents/Anderson-Waxman_LawAndEthics 
_r2_FINAL.pdf. 

 64.  According to Marra and McNeil, supra note 56, at 1152-55, a machine is the more 
autonomous the less frequently a human operator must intervene and give it instructions; the 
more adaptability it shows in the face of scenarios it is not fully programmed to encounter; 
and the more it is able to change its operating plan in order to achieve its pre-programmed 
task, for instance, when the machine is “stuck.”  

 65.  See Antonio Chialastri, Automation in Aviation, in AUTOMATION 79, 83-84 
(Florian Kongoli ed., 2012) (illustrating which of the system’s abilities are required in order 
to perform). The last example addresses its ability to make decisions when the anticipated 
“rules” or circumstances change and the system has to come up with the optimal reaction to 
a scenario it was not prepared for. Id. In more detail, human activity may roughly be divided 
into three groups: skill-driven activities, namely the ability to accomplish physical tasks; 
rules-driven activities, namely the ability to comply with pre-determined rules; and 
knowledge-driven, namely the ability to make decisions when the rules previously mentioned 
are inadequate. Id. An autopilot, for instance, is used for skill-driven activities (such as 
maintaining very precise altitude); for rules-driven activities (for instance, landing a plane at 
the correct angle in certain wind and weather conditionsbased on instructions or rules 
predetermined for such conditions); and theoretically for knowledge-driven abilities, such as 
in a case of unfamiliar malfunction. Id. The famous “Miracle on the Hudson,” where U.S. 
Airways pilot Sully Sullenberger safely force-landed an airplane after two of its engines 
suddenly failed, is an example of human’s superiority in “knowledge-driven” decisions, 
given that pilot Sullenberger made the “right decision” as opposed to flight algorithms which 
would have seemingly led to a catastrophic crash. Clint Eastwood’s movie, Sully, 2016 
focuses on that exact point. SULLY (Flashlight Films 2016). See also Adam Smith, The 
Miracle on The Hudson: How It Happened, TELEGRAPH (Nov. 22, 2016), 
https://www.telegraph.co.uk/films/sully/miracle-on-the-hudson-how-it-happened. 

 66.  See, e.g., Eliav Lieblich & Eyal Benvenisti, The Obligation to Exercise Discretion 
in Warfare: Why Autonomous Weapon Systems Are Unlawful, in AUTONOMOUS WEAPONS 

SYSTEMS: LAW, ETHICS, POLICY, supra note 56, at 250-51. 
 67.  At its lowest level, the AFRL’s spectrum refers to a system that is remotely 

controlled by a human or executes missions entirely pre-planned by humans. At its mid-level 
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Thirdly, each of the tests discussed above must also consider the specific 
stage of the machine’s decision-making process. 

According to military strategist John Boyd, the decision-making process 
comprises a continuous cycle of decision-making stages, consisting of four 
steps: observe, orient, decide and act.68 This cycle, known as the “OODA 
Loop,” has been used in both military, business and litigation contexts, to 
explain the process of decision-making and to assist in gaining tactical 
advantages over opponents.69 The OODA Loop is not limited to the decision-
making process of humans alone, and could apply to machines. Thomas 
Sheridan, for example, has developed a model for machine’s information-
processing, which includes very similar stages of the OODA Loop, including: 
Information Acquisition, Information Analysis, Decision Selection and Action 
Implementation.70 Naturally, as a machine becomes capable of performing 
more of the four steps on its own, the better the odds are that it will achieve a 
higher autonomy score on the spectrum of whether it can replace humans or 
not.71 But in addition to this partial overlap with the measures of autonomy 
discussed above, the OODA Loop may be independently used as a separate 
dimension on each of the autonomy measures. For instance, the “information 
acquisition” stage of a certain machine or algorithm may be characterized by 
high levels of autonomy based on the above spectrums, while the same 
system’s “decision selection” stage might involve very little autonomy. 

Also, the information acquisition stage performed by a military drone 
might include gathering data on potential targets without the need for any 
human involvementthus the drone receives a high autonomy score for the 
first test of autonomy. It might do so even in the face of changing weather 
conditions or new disguise methods used by the potential targetsthus 
receiving a high score for the second spectrum of autonomy as well. At the 
same time, the decision-making stage for exactly the same drone may involve 
very little autonomyat least with respect to the first spectrumas a decision 

 
stages of autonomy, the system itself may respond to real-time events. Marra & McNeil, su-
pra note 56, at 1155-58. The full list of the AFRL’s spectrum levels is as follows: Level 0: 
Remotely piloted vehicle. Level 1: Execute pre-planned mission remotely. Level 2: 
Changeable mission. Level 3: Robust response to real time faults/events. Level 4: 
Fault/event adaptive vehicle. Level 5: Real-time multi-vehicle coordination. Level 6: Real-
time multi-vehicle cooperation. Level 7: Battlespace knowledge. Level 8: Battlespace single 
cognizance. Level 9: Battlespace swarm cognizance. Level 10: Fully autonomous. Id. at 
1157. 

 68.  FRANS P.B. OSINGA, SCIENCE, STRATEGY AND WAR: THE STRATEGIC THEORY OF 

JOHN BOYD 1-3 (2007). 
 69.  See, e.g., A.S. DREIER, STRATEGY, PLANNING & LITIGATING TO WIN: 

ORCHESTRATING TRIAL OUTCOMES WITH SYSTEMS THEORY, PSYCHOLOGY, MILITARY SCIENCE 

AND UTILITY THEORY 74-85 (2012).  
 70.  Parasuraman et al., supra note 58; Marra & McNeil supra note 56, at 1153-55. 
 71.  Albeit not necessarily in the context of whether or not it is good at adapting to new 

conditions, which is not necessarily related to being able to execute all four stages of the 
OODA Loop.  
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to hit a target will very likely require human authorization and not be executed 
at the drone’s own discretion.72  

As demonstrated above, the different measurements of “autonomy” are 
numerous and complex and at times overlap. Should decision-makers decide to 
rely on all these measurements when determining whether products liability 
laws ought to apply, they would have to develop a complex matrix, accounting 
for all the different aspects of autonomy discussed. Moreover, since the matrix 
will likely not be of a one size fits all type, decision-makers would have to 
decide in advance, for each specific case and for each product type, how much 
weight to give each measurement.73 Such a differentiator has additional 
disadvantages, including the fact that the measurements themselves are 
imprecise. For example, when determining the system’s tolerance to 
environmental changes, the decision maker would not be facing a yes or no 
question, and would have to come up with an out-of-context numerical or 
qualitative estimation of the system’s tolerance of such conditions. Moreover, 
factoring in all these imprecise estimations into a combined outcome that 
classifies the system’s level of autonomy would lead to a more general 
sensation of whether the system is autonomous or not. Should the outcome be 
situated somewhere in the middle of the scale rather than near any of its ends, it 
would not be a useful tool for determining if we are in the traditional product 
kingdom or have found ourselves in the realm of thinking algorithms. In fact, a 
differentiator based on the level of autonomy might lead to absurd results or 
results incompatible with current classifications. Furthermore, the score or 
outcome received, even if placed on one of the ends of the autonomy scale, 
would merely give us an indication of the system’s autonomy. It would not, 
however, give us any indication of the desirability of applying products liability 
laws to the system. 

Choosing but a few autonomy measurements to rely on rather than the 
whole matrix might render the process less complicated, but would still suffer 
from imprecision and lack of correlation to the desirability of applying a 
products liability legal framework. Such an approach would also increase the 
risk of reaching absurd or inconsistent results.74  

 
 72.  See, e.g., Michael N. Schmitt & Jeffrey S. Thurnher, “Out of the Loop”: 

Autonomous Weapons Systems and the Law of Armed Conflict, 4 HARV. NAT’L SEC. J. 231, 
255 (2013); Markus Wagner, Taking Humans Out of the Loop: Implications for 
International Humanitarian Law, 21 J.L. INFO. & SCI. 155, 155-57 (2011); Kenneth 
Anderson & Matthew Waxman, Law and Ethics for Robot Soldiers, POL’Y REV. (Dec. 1, 
2012), https://www.hoover.org/research/law-and-ethics-robot-soldiers. 

 73.  Certain measurements will likely be relaxed and others more scrutinized, based on 
the specific type of system, its capabilities, and its potential usages. 

 74.  As demonstrated above, analyzing a drone’s level of autonomy based on its ability 
to act without humans’ involvement while leaving aside the underlying OODA Loop stage 
would be meaningless. Similarly, focusing on a system’s ability to replace humans or 
outperform them might render a coffee machine or even a 19th century engraver 
“autonomous.” 
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Therefore, I introduce a different approach to distinguishing products from 
thinking algorithms. Rather than focusing on a general out-of-context analysis 
of autonomy, I analyze how different yes or no features of traditional products 
and their self-learning counterparts reconcile with the rationales behind 
products liability laws. 

PART II: PRODUCTS LIABILITY RATIONALES  

The birth of products liability, among the most popular of all case types in 
the U.S.,75 is attributed to technological advances: The shift from local 
craftsmen to mass production factories caused a “lack of privity” problem that 
eliminated victims’ means of redress.76 The introduction of products liability 
resolved that discrepancy by eliminating the requirement of privity of contract 
between the injured and the tortfeasor.77 Under products liability laws, the 
seller or manufacturer of a defective product in a condition that is unreasonably 
dangerous is liable for the physical harms caused to the user or her property, 
even when there is no contractual relationship between them.78 One of the main 
rationales behind products liability laws therefore is compensating the victim, 
which stems from corrective justice principles, under which the tortfeasor is 
required to correct the wrong she has committed based on justice and fairness 
considerations.79 Comprising the general rationale of compensating the 

 

 75.  Tens of thousands of products liability cases are filed annually, more than any 
other case type. RONALD C. PORTER, LEX MACHINA, LEX MACHINA—2018 PRODUCT 

LIABILITY LITIGATION REPORT 2 fig. 2 (2018). In 2017, for example, 42,789 products liability 
cases were filed in the US. Id. at 1. The total number of commercial, IP, employment, 
antitrust, securities and bankruptcy cases filed that year combined was lower than said 
figure. Id. at 1-2. 

 76.  See, e.g., Winterbottom v. Wright, 152 Eng. Rep. 402, 405 (Exch. 1842) (holding 
that where the English Court of Exchequer decided a case where a mail coach collapsed and 
injured the plaintiff, “[t]here is no privity of contract between the parties; []if the plaintiff 
can sue, every passenger, or even any person passing along the road, who was injured by the 
upsetting of the coach, might bring a similar action[, and u]nless we confine the operation of 
such contracts as this to the parties who entered into them, the most absurd and outrageous 
consequences, to which I can see no limit, will ensue.”).  

 77.  Gifford, supra note 2 (recounting that in 1916, the New York Court of Appeals in 
MacPherson v. Buick Motor Co., 111 N.E. 1050, 1051, held that Buick owed a duty of care 
to its users despite not having privity of contract with them: “If to the element of danger 
there is added knowledge that the thing will be used by persons other than the purchaser, and 
used without new tests, then, irrespective of contract, the manufacturer of this thing of 
danger is under a duty to make it carefully.”). 

 78.  RESTATEMENT (SECOND) OF TORTS § 402A (AM. LAW INST. 1965). 
 79.  In Escola, Justice Traynor of the Supreme Court of California wrote that “[t]he 

cost of an injury and the loss of time or health may be an overwhelming misfortune to the 
person injured, and a needless one, for the risk of injury can be insured by the 
manufacturer.” Escola v. Coca Cola Bottling Co., 150 P.2d 436, 441 (Cal. 1944) (Traynor, 
J., concurring). See also John C.P. Goldberg & Benjamin C. Zipursky, The Easy Case for 
Products Liability Law: A Response to Professors Polinsky and Shavell, 123 HARV. L. REV. 
1919, 1944 (2010) (“In fact, we think that the case for allowing persons injured by defective 
products to obtain redress is very easy. It rests on the idea that a manufacturer bears a 
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victims–which is one of the rationales behind the general legal framework of 
tort law80–are sub-rationales that are more specific to products liability in 
particular. First, a manufacturer or seller marketing their product for public 
consumption assumes a special responsibility toward consumers who might be 
injured by the product.81 A related aspect is that consumers who bought 
products that caused injuries did so relying on manufacturers’ advertisements 
regarding their products, including their safety.82 So it is only fair that when the 
sense of safety and security customers relied on turns out to be unjustified, they 
will be compensated.83 Another sub-rationale relevant in the context of the 
fairness of compensating the victim is that manufacturers or sellers are 
generally in a better position to absorb or spread the costs of damages caused 
by their products84 or to insure against those costs.85 Thus, rather than having 
the unfortunate victim shoulder the overwhelming weight of the entire damages 
she has suffered, the costs may be insured, allocated among the entire group of 
consumers (in the form of a price increase), or marked as business expenses in 
manufacturers’ budgets.86 

A second main rationale behind tort law in general is deterrence.87 In the 
context of products liability, deterrence refers to deterring manufacturers from 
creating dangerous products, that is, promoting safety. Naturally, the threat of 
liability encourages manufacturers to improve the safety of their products: the 
safer the product, the less likely it is to cause damage, and the less likely 
manufacturers are to be sued and to pay damages.88 Said rationale is indeed 

 
responsibility to avoid causing injury by sending a dangerously defective product into the 
stream of commerce and is supported by principles grounded in negligence and warranty . . . 
.”). 

 80.  See, e.g., ERNEST J. WEINRIB, THE IDEA OF PRIVATE LAW 3 (1995). 
 81.  RESTATEMENT (SECOND) OF TORTS, § 402A cmt. c (AM. LAW INST. 1965); see also 

MARSHALL S. SHAPO, THE LAW OF PRODUCTS LIABLITY, 7-31 (3d ed. 1994). 
 82.  John E. Montgomery & David G. Owen, Reflections on the Theory and 

Administration of Strict Tort Liability for Defective Products, 27 S.C. L. REV. 803, 809 
(1976).  

 83.  This is regardless of victims’ means of redress in the form of breach of warranty, a 
contractual cause of action that in general does require privity between plaintiff and 
defendant. U.C.C. § 2-312 (2004); see e.g., All W. Electronics, Inc. v. M-B-W, Inc., 75 Cal. 
Rptr. 2d 509, 514 (1998); T.W.M. v. Am. Med. Sys., Inc., 886 F. Supp. 842, 844 (N.D. Fla. 
1995). The privity condition, however, is not required in all states, see, e.g., Renaissance 
Leasing, LLC v. Vermeer Mfg. Co., 322 S.W.3d 112, 129 (Mo. 2010).  

 84.  See, e.g., Montgomery & Owen, supra note 82, at 809-10; Escola, 150 P.2d at 436. 
 85.  George L. Priest, The Current Insurance Crisis and Modern Tort Law, 96 YALE 

L.J. 1521, 1559 (1987) (“Courts justified third-party insurance coverage based on how easy 
it seemed to be for manufacturers or service providers to aggregate risks by adding an 
insurance premium to the price of the product or service.”). 

 86.  Montgomery & Owen, supra note 82. 
 87.  See, e.g., Richard A. Posner, The Value of Wealth: A Comment on Dworkin and 

Kronman, 9 J. LEGAL STUD. 243, 244 (1980); John C.P. Goldberg, Twentieth-Century Tort 
Theory, 91 GEO. L.J. 513 (2003). 

 88.  See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2 cmt. a (AM. LAW INST. 
1998) (“On the premise that tort law serves the instrumental function of creating safety 
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sensible in the context of products liability, given that manufacturers are best 
positioned to eliminate or reduce the risks associated with their products 
(unlike consumers, manufacturers possess information regarding the product 
and can ensure inspections and quality control measures).89  

As will be elaborated below, the safety promotion rationale could be 
absolute, in the sense that whenever a defect exists the manufacturer will be 
liable regardless of the precautions she has taken to minimize the damage 
threat. Such liability is classified as strict liability, which requires no fault.90 
Alternatively, the safety promotion rationale may be applied only to a limited 
extent, namely to the extent that it is feasible and economical for the 
manufacturer to take the extra precautions such that their benefits outweigh 
their costs91 (as will be elaborated on in the following paragraphs, this type of 
liability is reflected mostly in design defect scenarios). 

The above rationales, as well as the effects of technological advances, are 
also reflected in the specific mechanisms that govern the different kinds of 
defects in products, namely manufacture defect, design defect, and failure to 
warn. Manufacture defect occurs when the product was not properly 
manufactured (for example, due to a departure from the product’s assembly 
specifications or use of non-appropriate materials). Under the laws of most 
states, manufacture defects expose sellers to strict liability, which does not 
require proof of any negligence by the seller, as long as the existence of a 
defect is proved.92  

 
incentives, imposing strict liability on manufacturers for harm caused by manufacturing 
defects encourages greater investment in product safety. . .”). Strict liability for harm caused 
by manufacturing defects has been supported on the ground that it promotes investment in 
product safety. See, e.g., Hoven v. Kelble, 256 N.W.2d 379, 391 (Wis. 1977) (“Strict 
liability is an effective deterrent; it deters the creation of unnecessary risks, or to put it 
positively, strict liability is an incentive to safety.”); U.S. Airways v. Elliott Equip. Co., No. 
06-1481, 2008 WL 4425238, at *5 (E.D. Pa. Sept. 29, 2008) (“[I]mposing strict liability here 
would serve as an incentive to safety because Fluidics appears to be involved in these types 
of contracts on a regular basis and is in a better position than a consumer to prevent circula-
tion of defective products.”). 

 89.  Manufacturers possess information on the design and production process of the 
product, as well as on potential alternatives. The exception is the potential usages consumers 
might make of the product, which are not always in the scope of the manufacturers’ 
knowledge or expectations. See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2(c) cmt. m. 
(AM. LAW INST. 1998). 

 90.  It has mostly been applied under “manufacture defect” scenarios, as will be 
discussed below. See, e.g., Richard L. Cupp & Danielle Polage, The Rhetoric of Strict 
Liability Versus Negligence: An Empirical Analysis, 77 N.Y.U. L. REV. 874, 889 (2002).  

 91.  Naturally, which benefits and which costs should be considered have been the 
subject of much debate and interpretation. See, e.g., Cipollone v. Liggett Grp., Inc., 644 F. 
Supp. 283, 289-90 (D.N.J. 1986) (concluding that the benefits to be weighed do not include 
the benefits to the industry where the defendant operates or to its employees).  

 92.  See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2(a) (AM. LAW INST. 1998) 
(“[A] product . . . contains a manufacturing defect when the product departs from its 
intended design even though all possible care was exercised in the preparation and marketing 
of the product”); JOHN C.P. GOLDBERG & BENJAMIN C. ZIPURSKY, THE OXFORD 

INTRODUCTIONS TO U.S. LAW: TORTS 284-88 (2010). 
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Among other things, the introduction of strict products liability is attributed 
to technological progress. Increasingly complicated production processes 
render it difficult for victims to investigate the damaging product and to prove 
negligence in the manufacturing process. Consequently, courts adopted the 
strict liability no-fault standard that allows victims’ redress even as technology 
advances.93 In addition to ensuring compensation for victims, strict liability—
as explained above—strives to encourage manufacturers to improve the safety 
of their products. The rationale of safety promotion is also reflected in the 
second scenario of products liability—design defect—albeit in a more complex 
manner. As suggested by its title, a design defect is a flaw in the design of the 
product itself, regardless of how it is manufactured. Importantly, damages 
caused by algorithmic decision makers, which will be the main focus of our 
discussion, are most likely to fall under the category of design defect rather 
than manufacture defect.94 

In the past, design defect was governed by the consumer expectations test, 
that is, whether the product was dangerous beyond the expectations of an 
ordinary consumer.95  

Since no proof of negligence by the manufacturer or seller was required, 
the consumer expectations test could have been classified as a form of strict 
liability, reflecting again the rationales of compensating the victim as well as 
encouraging safety.96 Nowadays however—again among other things for 
technology-related reasons that will be discussed below—the majority of states 
have moved away from the consumer expectations test to the risk utility test.97 
By that approach, a design defect occurs when foreseeable risks associated with 
the product could have been minimized by using a feasible safer alternative.98 

 
 93. Gifford, supra note 2, at 118 (“As handicrafts have been replaced by mass 

production with its great markets and transportation facilities, the close relationship between 
the producer and consumer of a product has been altered. Manufacturing processes . . . are 
ordinarily either inaccessible to or beyond the ken of the general public. The consumer no 
longer has means or skill enough to investigate for himself the soundness of a product. . . .” 
(quoting Escola, 150 P.2d at 443 (Traynor, J., concurring))). 

 94.  This is because problems associated with coding do not stem from occasional 
defects in manufacture but instead are implemented all along the product line, which is 
compatible with design defects. See F. Patrick Hubbard, “Sophisticated Robots”: Balancing 
Liability, Regulation and Innovation, 66 FLA. L. REV. 1803, 1854 (2014).  

 95.  See RESTATEMENT (SECOND) OF TORTS § 402A cmt. c (AM. LAW INST. 1965); 
DAVID G. OWEN, PRODUCTS LIABILITY LAW 292-99 (3d ed. 2014). 

 96.  Gifford, supra note 2, at 117-18. 
 97.  See Owen, supra note 95, at 292-99; Jeffrey K. Gurney, Sue My Car Not Me: 

Products Liability and Accidents Involving Autonomous Vehicles, U. ILL. J.L. TECH. & POL’Y 
247, 262 (2013). Other reasons for not adhering to the consumer expectations test are that it 
connotes contract-based rather than tort-based liability; that its application to bystanders—
who presumably had no expectations of the product—is problematic; and that obvious or 
patent defects might block victims means of redress as they could have expected the danger. 
Mary J. Davis, Design Defect Liability: In Search of a Standard of Liability, 39 WAYNE L. 
REV. 1217, 1234, 1236, 1231 (1993). 

 98.  RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. §2(b) (AM. LAW INST. 1998). 
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To go back to our rationale of safety promotion, the risk utility analysis strives 
to improve safety, but does so only to the extent such improvements are 
feasible and economical. This is because the risk utility test does not require the 
use of the safest design possible, but of the safest design whose costs will not 
exceed the safety benefits it contributes as compared with the alternatives.99 
The calculations required to determine whether a safer alternative is or is not 
mandated are complex;100 still, manufacturers are deemed best positioned to 
perform them.101  

Asymmetrical information and manufacturers’ better knowledge of the 
product and its potential risks are also key factors in the third scenario invoking 
products liability—failure to warn. Under this doctrine, manufacturers must 
adequately warn consumers of the existence of hidden dangers, as well as 
instruct them on the safe usage of the product, if they wish to avoid liability.102 
Under the Restatement, the requirement is for reasonable instructions or 
warnings, which largely subjects this type of defect to the negligence standard 
as well.103 

The general trend in products liability law has indeed shifted back toward a 
more negligence-based approach.104 Although strict liability fulfills the 
rationales of a victim’s compensation and promotion of safety to a fuller 
extent,105 other competing rationales and interests have swung the pendulum 

 

 99.  Gurney, supra note 97, at 263; see also Turner v. Gen. Motors Corp., 514 S.W.2d 
497, 504 (Tex. Civ. App. 1974) (“If a change in design would add little to safety, render the 
vehicle ugly or inappropriate for its particular purpose, and add a small fortune to the 
purchase price, then a court should rule as a matter of law that the manufacturer has not 
created an unreasonable risk of harm.”); cf. David G. Owen, Toward a Proper Test for 
Design Defectiveness: “Micro-Balancing” Costs and Benefits, 75 TEX. L. REV. 1661, 1673 
(1997) (noting that products should possess benefits that outweigh their costs).  

100.  Taking into consideration factors such as the likelihood of damage, severity of 
damage, the costs of adopting a safer measure, the probability that the safer measure would 
indeed minimize the risk for damage or the magnitude of said damage and, in such cases, the 
degree to which the damage was indeed lower, etc. For additional factors rendering said 
calculations more complex “in the real world” (such as administrative costs and uncertainties 
as to the application of the law) see Keith Hylton, The Law and Economics of Products 
Liability, 88 NOTRE DAME L. REV. 2457, 2495-2497 (2013).  

101.  See Owen, supra note 99, at 1675-76. 
102.  See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 17, cmt. i (AM. LAW INST. 

1998); Owen, supra note 99, at 1666.  
103.  RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 2, reporter’s note to cmt. m (AM. 

LAW INST. 1998) (“[A]n overwhelming majority of jurisdictions supports the proposition that 
a manufacturer has a duty to warn only of risks that were known or should have been known 
to a reasonable person.”). 

104.  The majority of products litigation involves design and warning defects which are 
subject to the negligence standard. Further, design defects are now subject to the risk-utility 
test rather than the consumer expectations test in most states, which, as explained supra, 
reflects a shift from a strict liability approach to the negligence approach. See Gifford, supra 
note 2, at 119-22. 

105.  Under strict liability, manufacturers pay for damages caused by defective products 
regardless of the level of care they have demonstrated. Victims are thus compensated in a 
larger proportion of cases. At the same time, the cost of damage is internalized by 
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back to the fault-based negligence approach. First, increased likelihood of 
liability is generally expected to impede development and innovation, which 
will create a “chilling effect” on technological advancement.106 Second, 
increased levels of safety (potentially stemming from likelihood of liability), 
are expected to adversely affect different features of the product, including its 
pricing, ease of operation, appearance, and additional factors related to 
consumers’ preferences other than safety.107 The legal framework of products 
liability therefore purports to strike an optimal balance between contradictory 
rationales and interests. Naturally, such a balance also depends on the specific 
product and industry.108 Thinking algorithms’ unique features may well affect 
the optimal balance between rationales and interests. But before turning to said 
analysis, let us check whether such algorithms are at all relevant in the products 
liability context, or whether their features render the products liability legal 
framework completely inapplicable from the outset. 

PART III: IS IT A PRODUCT? IS THERE A DEFECT?  

One could argue that regardless of products liability rationales, algorithms 
that replace human discretion simply cannot be classified as “products.” 
Alternatively, it could be argued that damages caused by such algorithms may 
not be attributed to “defects.” If so, the argument goes, applying products 
liability rationales to distinguish which algorithms should be governed by 
products liability would simply be irrelevant, just like discussing free speech 
rationales in order to determine whether the howling of a wolf should be 
protected under the First Amendment would be irrelevant—the underlying 
legal framework simply does not apply to begin with. The next section 
addresses these preliminary queries and explains why products liability 
rationales should nevertheless be the basis for analysis.  

 
manufacturers, such that the products’ prices reflect their true risks. A. Mitchell Polinsky & 
Steven Shavell, The Uneasy Case for Product Liability, 123 HARV. L. REV. 1437, 1440 
(2010). 

106.  See, e.g., Gifford, supra note 2, at 125; Colonna, supra note 8, at 109-11; see also 
COMMUNITY RESEARCH AND DEVELOPMENT INFORMATION SERVICE, FINAL REPORT SUMMARY 

- ROBOLAW (REGULATING EMERGING ROBOTIC TECHNOLOGIES IN EUROPE: ROBOTICS FACING 

LAW AND ETHICS), http://cordis.europa.eu/result/rcn/161246_en.html (concluding that 
products liability law might indeed create a chilling effect on the introduction of automated 
cars to the market).  

107.  Cf. DAVID G. OWEN ET AL., PRODUCTS LIABILITY AND SAFETY: CASES AND 

MATERIALS 202-03 (3d ed. 1996) (discussing factors typically taken into account under the 
risk utility analysis employed by courts). 

108.  See, e.g., Goldberg & Zipursky, supra note 79 (rebutting Polinsky and Shavell’s, 
supra note 105, argument against the efficiency and desirability of products liability laws 
and emphasizing how different industries are differently affected by such laws). See also A. 
Mitchell Polinsky & Steven Shavell, A Skeptical Attitude About Product Liability Is 
Justified: A Reply to Professors Goldberg and Zipursky, 123 HARV. L. REV. 1949, 1949-50 
(2010) (stressing that their contention as to “whether product liability is undesirable depends 
on the particular product”). 
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A. On “Products”  

While several states have clearly defined the term “product” for the 
purpose of applying products liability,109 in general it is up to the courts to 
determine in any given case whether an underlying damaging object is indeed a 
“product.”110 For many types of systems or machines that have caused damage, 
the classification as a product does not raise any question marks; but systems 
based on information—which naturally are the subject matter of this Article—
do fall within the gray zone of the “products kingdom” and occasionally have 
been excluded from it.  

First, several courts held that information in itself did not constitute a 
product for the purpose of applying products liability, because it lacked 
tangible form.111 Secondly, and focusing on the analogy of information-based 
systems to professional services112 (an analogy even better suited to thinking 
algorithms which, as discussed above, replace human professionals), courts in 
the past were sometimes inclined to rule that such services were not to be 
viewed as “products.”113  

Yet in many other instances courts did treat information as a product and 
applied products liability laws when errors in the information caused damage, 

 
109.  See Joseph L. Reutiman, Be a “Product” Subject to Products Liability Claims, 22 

CORNELL J.L. & PUB. POL’Y 181, 187 (2012) (noting that, as an example, IDAHO CODE ANN. 
§ 6-1402(3) (2008) defines a product as “any object possessing intrinsic value, capable of 
delivery either as an assembled whole or as a component part or parts, and produced for 
introduction into trade or commerce” while excluding “[h]uman tissue and organs, including 
human blood and its components”). 

110.  See id. Cf. Michael D. Scott, Tort Liability for Vendors of Insecure Software: Has 
the Time Finally Come?, 67 MD. L. REV. 425, 425 (2008) (noting that the RESTATEMENT 

(THIRD) OF TORTS is drafted broadly, leaving much flexibility as to what things fall within its 
definition and what things do not); RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 19(a) 
(AM. LAW INST. 1998) (“A product is tangible personal property distributed commercially 
for use or consumption.”). 

111.  AmericaWinter v. G.P. Putnam’s Sons, 938 F.2d 1033, 1036 (9th Cir. 1991) 
(acknowledging that the information at hand was embedded in a book, which is a tangible 
object, but nevertheless ruling that an encyclopaedia of mushrooms which misled a reader to 
consume poisonous mushrooms was not subject to products liability laws); Torres v. City of 
Madera, No. 09–16573, 2005 WL 1683736, 46-49 (E.D. Cal. 2005) (holding that training 
materials consisting of a CD/ROM, slide presentation, and paper handouts were not products 
and therefore not subject to products liability); Am. Online, Inc. v. St. Paul Mercury Ins., 
207 F. Supp. 2d 459, 467 (E.D. Va. 2002) (“[T]he plain and ordinary meaning of the word 
tangible is something that is capable of being touched or perceptible to the senses. Computer 
data, software and systems do not have or possess physical form and are therefore not 
tangible property as understood by the Policy.”). See Reutiman, supra note 109, for further 
analysis. 

112.  Scott, supra note 110, at 434-36. 
113.  Id. at 461-62 (“Professional services do not ordinarily lend themselves to the doc-

trine of tort liability without fault because they lack the elements which gave rise to the doc-
trine.” (quoting La Rossa v. Sci. Design Co., 402 F.2d 937, 942 (3d Cir. 1968)). See also 
Torres, 2005 WL 1683736 at *13; Lemley v. J & B Tire Co., 426 F. Supp. 1378, 1379 (W.D. 
Pa. 1997); Snyder v. ISC Alloys, 772 F. Supp. 244, 250 (W.D. Pa. 1991). 



84 STANFORD LAW & POLICY REVIEW [Vol. 30:61 

especially when the information was integrated with a physical object.114 Other 
considerations for applying products liability included whether the object was 
mass-produced115 or whether it had dangerous potential.116 Naturally, these 
considerations tend to exist in the “thinking algorithms” this Article focuses on 
(given that thinking algorithms are often embedded in physical objects such as 
cellular phones or computers, that they are often mass-marketed, and that errors 
in them might cause deadly results).117  

It is therefore very likely, at least prima facie, that thinking algorithms too 
might find themselves classified as products, even if their entire essence is 
information, and even if their function replaces human services. 

B. On “Defects”  

It was pointed out in Part II that, as indicated by their titles, manufacture 
defect and design defect both require the existence of a “defect.” Thinking 
algorithms, however, are inherently expected to cause damage regardless of any 
defects. This is because sophisticated systems, in particular self-learning 
algorithms, rely on probability-based predictions,118 and probabilities by nature 
inevitably get it wrong some of the time. To take a concrete example: a medical 
algorithm is designed to diagnose patients and prescribe optimal treatment. 
Assume that the system is 100% certain that the patient has a type of disease 

 

114.  Retail Sys., Inc. v. CNA Ins. Companies, 469 N.W.2d 735, 737 (Minn. Ct. App. 
1991) (“The data on the tape was of permanent value and was integrated completely with the 
physical property of the tape. Like a motion picture, where the information and the celluloid 
medium are integrated, so too were the tape and data integrated at the moment the tape was 
lost.”). 

115.  Saloomey v. Jeppesen & Co., 707 F.2d 671, 676 (2d Cir. 1983); Halstead v. United 
States, 535 F. Supp. 782, 791 (D. Conn. 1982).  

116.  Fluor Corp. v. Jeppesen & Co., 170 Cal. App. 3d 468, 474-75 (1985) (referring to 
a previous holding that only innately dangerous items might be subject to products and hold-
ing that errors in aeronautical charts could fall under said definition).  

117.  To take Waze as an example (which will be further analyzed in Part IV), Waze is 
embedded in the user’s cellphone, has 100 million active users, and, as elaborated in infra 
note 145, is of clear potential danger. See Greg Sterling, Waze Launches ‘Local’ Ads 
Primarily Aimed at SMBs and Franchises, SEARCH ENGINE LAND (Mar. 28, 2018, 9:20 AM), 
https://searchengineland.com/waze-launches-local-ads-primarily-aimed-at-smbs-and-
franchises-295285. 

118.  A Netflix algorithm recommending movies does so based on a numeric prediction 
that we would like said choice, relying on our previous taste and an analysis of enormous 
databases of other consumers’ preferences. Anthony Schneck, The Subliminal Trick Netflix 
Uses to Get You to Watch Its Movies & Shows, THRILLIST, https://www.thrillist.com/ 
entertainment/nation/how-new-netflix-recommendation-algorithm-works (last updated 
Oct. 26, 2018, 10:59 AM). A bail algorithm recommending whom to release and whom to 
deny bail does so based on the probability that the suspect would break the law or escape if 
allowed to post bail. An application for choosing an optimal treatment for a patient too is 
based on the probability that the patient indeed has the medical condition diagnosed, and that 
she would react to the optimal treatment as most other patients would. Vigmesh 
Ramachandran, Are Algorithms a Fair Way to Predict Who’ll Skip Bail?, FUTURITY (June 5, 
2017), https://www.futurity.org/bail-bias-algorithm-1450462-2. 
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that is cured without any intervention in 99% of the cases. But in the remaining 
1% of the cases, the patient will die if not given treatment.119 Given the 
probabilities of success, in 99 of 100 cases the algorithm would be right to 
choose not to intervene. The algorithm, however, naturally cannot “tell” in 
advance whether it is dealing with the 99 “ordinary” cases, or whether the 
patient before it is the 1 in a 100 exception. Choosing the optimal course of 
action will therefore be based on damage expectancy: which decision, if taken a 
large number of times, will lead to the best results? Assuming the magnitude of 
damage caused by no intervention is “0” for 99% of the cases and is “100” for 
the remaining 1%, and that the magnitude of damage due to unnecessary 
intervention is “10” (assuming it leads to significant side effects), the optimal 
decision will be not to intervene (as damage expectancy of intervening is 99 X 
10 = 990, whereas damage expectancy of not intervening is 1 X 100 = 100).120 
Yet every once in a while our medical algorithm will undoubtedly encounter 
some “exceptional” patients as well, for whom its optimal choice of no 
intervention will be catastrophic.  

Focusing on the damage caused due to a user being on the bad side of the 
statistics certainly does not mean that the system was defectively manufactured 
or defectively designed. On the contrary: the system has reached the decision 
we would want it to reach. It just so happens that whenever thinking algorithms 
reach decisions based on probabilities—which is exactly what they are 
designed to help humans with—inevitable damage will occur when the general 
rule is applied in cases that in hindsight turned out to be the exceptions.121 
Does this mean that thinking algorithms should never be governed by products 

 
119.  In real life, of course, the probabilities that are factored in are not one dimensional 

as in this example but are reflected in various stages of the decision-making process. 
Diagnosing the patient’s medical condition is in itself often probability-based. Even if all 
signs indicate cancer, for example, there is still a chance that the patient suffers from a 
different disease. See, e.g., Lucy McNally, Woman Endures Months of Unnecessary Chemo 
Treatment After Being Wrongly Diagnosed with Cancer, ABC NEWS (Nov. 17, 2016, 
4:08 PM), http://www.abc.net.au/news/2016-11-18/woman-given-unnecessary-chemo-treat 
ment-bad-cancer-diagnosis-nsw/8036438. Moreover, even if he does suffer from cancer, 
diagnosis of the specific type of cancer rather than another one is too probability-based. 
Even within the same types of cancer, different types of tumors exist, and determining 
between them might be a matter of probabilities. See, e.g., William B. Schwartz et al., 
Pathology and Probabilities: A New Approach to Interpreting and Reporting Biopsies, 305 
N. ENG. J. MED. 917, 917-23 (1981).  

120.  Ignoring the additional damage of “20” sustained by the 1% of patients who did 
need the intervention, since for them the other alternative is worse. 

121.  Note that because choices are made based on damage probabilities, it is also 
possible that the decisions chosen would in fact be damaging in the vast majority of cases, 
and that this would still be deemed the “right” one to make. If, for example, there is a 1% 
probability of catastrophic damage of “100” (such as death), and a 99% probability of an 
average damage of “1” (such as a minor scratch), a thinking algorithm would be correct in 
preferring to cause scratches 99% of the times (with damage expectancy of “99”) rather than 
to cause death 1% of the times (with damage expectancy of “100”). In such cases, the 
algorithm’s choices would almost always be damaging, but in no way defective.  
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liability and that our analysis should have nothing to do with said legal 
framework? Not necessarily.  

First, in addition to damages caused through no defect, thinking algorithms 
may certainly be responsible as well for defect-based damages, which do not 
stem from the user being on the bad side of statistics.122 Secondly, thinking 
algorithms are not unique in their ability to cause damage in the absence of a 
defect. Traditional products too may be defect-free yet nevertheless cause 
damage.123 Indeed, to win a products liability lawsuit a plaintiff must prove—
even when subject to strict liability theory— the existence of a defect,124 
implying that certain damages are not caused by a defect.  

Granted, one could argue that in thinking algorithms damage caused 
without the existence of a defect is inherent. This would be unlike traditional 
products which do not inherently cause damage when no defect is involved. If 
so, products liability may indeed not be the most efficient framework 
applicable, especially given that products liability procedures are considered 
expensive and slow.125 While a different legal framework—whose underlying 
assumption is that no defect exists in the first place—might be more efficient, 
this does not render our current products liability regime irrelevant altogether.  

 Thinking algorithms, despite their nature as information-based and 
although they may frequently cause damage regardless of a defect, may thus 
nevertheless be governed by products liability. I will therefore now turn to 
analyzing when a system is a thinking algorithm such that products liability 
rationales are less achievable when applied to damages caused by such systems. 

 
122.  If, for instance, the medical algorithm mentioned above had chosen to intervene, 

despite the lower chances of success and the higher damage expectancy, we would probably 
consider it a defect. By the same token, if the algorithm had reached the probabilities 
described above because it ignored critical information that was available, this would 
probably also be classified as a defect.  

123.  Car tires, for example, may explode after a certain time of usage and cause lethal 
damage. As long as the manufacturer provides appropriate warning as to their maintenance 
and frequency of replacement, any damage caused by such worn-out tires will not be 
attributed to a defect. See, e.g., Carmichael v. Samyang Tires, Inc., 923 F. Supp. 1514, 1518-
22 (S.D. Ala. 1996) (pertaining to an accident resulting from tire failure and explaining that 
in order “[t]o maintain a claim under the AEMLD, a plaintiff cannot simply prove that an 
accident occurred and that he was injured; rather, ‘a defect in the product must be 
affirmatively shown’” (quoting Townsend v. General Motors Corp., 642 So. 2d 411, 415 
(Ala. 1994))).  

124.  Carmichael, 923 F. Supp. at 1518.  
125.  See, e.g., Robert W. McGee, Who Really Benefits from Liability Litigation? 1-3 

(Dumont Inst. for Pub. Policy Research, Policy Analysis No. 24, 1996), 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=82596. This is even more so in the 
context of algorithmic decision makers. See, e.g., Gurney, supra note 97, at 262-64; David 
C. Vladeck, Machines Without Principals: Liability Rules and Artificial Intelligence, 89 
WASH. L. REV. 117, 137-41 (2014). 
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PART IV: DISTINGUISHING PRODUCTS FROM THINKING ALGORITHMS  

As discussed above, this Article proposes an alternative approach for 
distinguishing traditional products from thinking algorithms which is not based, 
per se, on the system’s level of autonomy. Rather, this part analyzes how 
different features or characteristics of different decision-making systems—
manifested in the four different OODA Loop stages—affect the achievement of 
the different rationales behind products liability. Practically, the more the 
system’s features reconcile with achieving products liability rationales, the 
more inclined we would be to classify them as traditional products. Systems 
whose features impede products liability rationales, however, should be 
classified as thinking algorithms that warrant different treatment.  

 Before delving into recognizing and discussing these features, let us 
provide some background on algorithms’ self-learning abilities and their 
consequences. Given the enormous amounts of data that algorithms are 
exposed to and are capable of processing, algorithms’ learning abilities allow 
them to learn from existing information and implement the conclusions in 
future sets of data. “Supervised learning” refers to a process where algorithmic 
training is more structured, in the sense that algorithms are fed with right and 
wrong answers pertaining to existing databases, so that they can develop a 
model for predicting the right answer for similar data sets that were not 
included in the training. A greater degree of freedom to come up with their own 
conclusions or recognize their own patterns is given to algorithms in the 
unsupervised learning process. Here algorithms are not fed any answers but are 
free to decipher patterns in the data that may indicate the right answer.126 
Systems’ self-learning abilities do not depend only on the type of learning, 
supervised or unsupervised. The specific field they operate in also affects their 
capabilities, resulting from, among other things, the type and volume of 
available information. In the field of radiation oncology, for example, concerns 
have been raised regarding the possible pace of developing machine-learning 
abilities, given the difficulty of collecting standardized data sets that the 
algorithms could train on. 127 Other projections, however, view radiation 
oncology as a very good candidate for personalized treatment based on self-
learning algorithms.128 Based on said projections, radiation therapy will be one 
of two concrete sets of examples I will review in the next part that uses specific 

 
126.  Harry Surden, Machine Learning and Law, 89 WASH. L. REV. 87, 93-95 (2014); 

Avigdor Gal, Organisation for Economic Co-operation and Development [OECD], It’s a 
Feature, Not a Bug: On Learning Algorithms and What They Teach Us, at 3, OECD Doc. 
DAF/COMP/WD(2017)50 (June 7, 2017), https://one.oecd.org/document/DAF/COMP/WD 
(2017)50/en/pdf. 

127.  Babette Ten Haken, Radiation Oncology, AI and Machine Learning in Research, 
BABETTE TEN HAKEN (July 26, 2017), https://babettetenhaken.com/2017/07/26/radiation-
oncology-ai-machine-learning. 

128.  Huan-Hsin Tseng et al., The Role of Machine Learning in Knowledge-Based 
Response-Adapted Radiotherapy, FRONTIERS ONCOLOGY 1, 2 (July 27, 2018), 
https://doi.org/10.3389/fonc.2018.00266. 
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systems in order to identify features whose existence renders it more difficult or 
more plausible to achieve the rationales behind products liability laws. 

A. Examples of Products Versus Thinking Algorithms  

One of the most notorious tragedies in the history of medical devices is that 
of Therac-25, a radiation therapy machine used to destroy cancerous tissues. 
Between 1985 and 1987, six patients in the United States and Canada were 
inadvertently given an overdose of radiation, resulting in three fatalities.129 
Investigation revealed that the system had several “bugs” causing it to 
accidentally release much higher dosages of radiation than prescribed by the 
machine’s technician.130 Although the lawsuits filed in connection with the 
Therac-25 accidents were all settled before trial,131 Therac-25 was considered 
one of the first cases to give rise to products liability claims in connection with 
medical devices.132  

Therac-25 was useful for administering radiation in a precise and automatic 
manner; the example we shall use as its sophisticated counterpart is a machine 
also capable of taking and implementing professional decisions. Nowadays, 
new generation radiation machines mainly focus on improved precision of the 
radiation’s distribution. Equipped with infrared cameras and robotic beds, 
radiation machines now make automatic minor adjustments in the positioning 
of the patient throughout the radiation process to achieve more precise 
administering of the treatment.133 An additional feature that could be embedded 
in radiation machines, however, would also include dose calculation algorithms 
that would enable the machine to administer radiation beams but also to decide 
(or recommend) the optimal treatment plan for each patient based on his unique 
characteristics.134 Existing algorithms for calculating radiation dosage are used 

 
129.  Jonathan Jacky, Programmed for Disaster: Software Errors That Imperil Lives, 

SCIENCES, Sept.-Oct. 1989, at 22, 22; Nancy G. Leveson & Clark S. Turner, An Investigation 
of the Therac-25 Accidents, COMPUTER, July 1993, at 18, 23. 

130.  For example, one of the software “bugs” that caused several accidents occurred 
when the human operator inserting the treatment dosage made a change within the eight-
second time window during which Therac-25 set its magnets for operation. In these instances 
the change was not registered. Leveson & Turner, supra note 129, at 21, 27-28. 

131.  Nancy G. Leveson, Medical Devices: The Therac-25, at 11 (Dec. 31st, 1995), 
https://www.cs.indiana.edu/classes/p415-sjoh/readings/Therac25/therac-update.pdf; Sara E. 
Dyson, Medical Device Software & Product Liability: An Overview (Part I), MEDTECH 

INTELLIGENCE (Sept. 15, 2017), https://www.medtechintelligence.com/feature_article/ 
medical-device-software-products-liability-overview-part/2. 

132.  Dyson, supra note 131. 
133.  Next Generation State-of-the-Art Radiation Therapy System at Netcare N1 City 

Hospital, NETCARE, https://www.netcare.co.za/News-Hub/Articles/articleid/639/next-gen 
eration-state-of-the-art-radiation-therapy-system-at-netcare-n1-city-hospital (last visited 
Nov. 7, 2018). 

134.  Which consists of “the prescribed dose level for the tumor, the number of 
therapeutic beams, their angles of incidence, and a set of intensity amplitudes.” Uwe Oelfke 
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today,135 but the future system we take as an example makes use of learning 
algorithms that produce personalized dosage calculations based on the type of 
tumor involved and on other parameters that the system itself deems relevant, 
after “learning” from large databases of previous cases and deciphering 
correlations between different parameters and improved outcomes. 

Our second example of a traditional product versus a thinking algorithm 
takes us to the world of driving, more specifically the world of navigation. 
Global Positioning Systems (GPSs) were gradually put to civilian use at the end 
of the last century,136 and are now commonly used in different modes of 
transportation, including cars. By automatically determining a user’s current 
location, the GPS uses its database of maps to calculate a route from the 
specified location to the end point, as entered by the user.137 In recent years, 
numerous accidents have been reported to be the result of following GPS 
instructions; in addition to unfortunate encounters of vehicles with speeding 
trains,138 GPS systems have led drivers into a creek or to a cliff edge,139 to 
enter a road in the wrong direction, to drive under a bridge too low for their 
vehicles to pass under safely,140 and even guided them straight into a war 
zone.141 Though the classification of GPS systems as products is not 
necessarily clear-cut, numerous courts have acknowledged the somewhat 
analogous object of aeronautical charts as products for the purpose of applying 
products liability.142 A GPS is therefore the system we will use as an example 
of a traditional product for our analysis.  

 
& Christian Scholz, Dose Calculation Algorithms, in NEW TECHNOLOGIES IN RADIATION 

ONCOLOGY 187, 187 (Wolfgang Schlegel et al. eds., 2006).  
135.  Id. at 188. 
136.  John E. Woodard, Comment, Oops, My GPS Made Me Do It!: GPS Manufacturer 

Liability Under a Strict Products Liability Paradigm When GPS Fails to Give Accurate 
Directions to GPS End-Users, 34 U. DAYTON L. REV. 429, 437 (2009). 

137.  Id. at 438-40. 
138.  Id.; see also Yaron Steinbuch & Hoa Nguyen, Driver Blames GPS for Crash with 

Metro-North Train in Bedford Hills, BHD. OF LOCOMOTIVE ENG’RS & TRAINMEN (Sept. 30, 
2008), https://www.ble-t.org/pr/news/headline.asp?id=23809; What if a GPS Causes an 
Atlanta Accident and Injuries?, SAMMONS & CARPENTER P.C. (Jan. 19, 2017), 
https://www.atlantainjuryattorneys-blog.com/2017/01/gps-causes-atlanta-accident-injuries. 
html. 

139.  Mark Havnes, Too Much Faith in GPS Leaves Monument Visitors Stranded, SALT 

LAKE TRIB., Aug. 5, 2008; Edward Joel Lake, Defective GPS Systems and Product Liability 
for Accidents, AVVO (Nov. 21, 2012), https://www.avvo.com/legal-guides/ugc/defective-
gps-systems-and-product-liability-for-accidents. 

140.  Lake, supra note 139; $15M Products Liability Lawsuit Blames GPS Maker 
Garmin for 2013 Massachusetts Bus Crash, ALTMAN & ALTMAN LLP (Jan. 27, 2015), 
https://www.bostoncaraccidentlawyerblog.com/2015/01/15m_products_liability_lawsuit. 
html. 

141.  Woodard, supra note 136; Yuval Azoulay, American Tourist Stoned by Mob After 
Accidentally Entering Qalandiya, HAARETZ (June 25, 2008, 12:00 AM), 
https://www.haaretz.com/1.4995814.  

142.  For further discussion, see Part III above. See also Cruz v. Talmadge, 244 F. Supp. 
3d 231, 232-33 (D. Mass. 2017) (remanding to the superior court department a case 
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Our equivalent example of a more sophisticated system is Waze, a 
community-based navigation application designed for navigation per se, but 
also to outsmart traffic.143 Founded in 2006, the Israeli development makes use 
of real-time updates from its community of drivers—automatic ones sent by the 
system itself reporting its location, and traffic submissions actively sent by 
users—in order to create an ever-updating mapping of the roads system.144 
Thus, Waze’s algorithms are able to calculate not only the shortest way from 
point A to B, but also the quickest way at any given moment. It does so by 
learning the landscape in any parts of the globe Waze operates, as well as 
learning the current traffic condition of each and every route, based on real-
time feedback from Waze’s users. 

As successful as it is, Waze too has been blamed for leading drivers into 
dangerous situations that might result in harm.145 As we will see in greater 
detail below, various features of Waze render it different from traditional GPSs, 
when the system’s compatibility with products liability laws is analyzed. 

B. Which Products Liability Rationales Apply to Which Algorithms 

For an orderly analysis of the compatibility of the various rationales of 
products liability laws with both sets of examples, the Article addresses each 
rationale separately and examines how the thinking algorithm’s features affect 
it as compared with the traditional product.  

1. Promoting Safety 

As discussed above, a central rationale behind the framework of products 
liability is to encourage manufacturers to better their products’ safety. Whether 
or not products liability indeed achieves said end has been the subject of heated 
debates, but for the sake of discussion we shall assume that in general it 
does.146 But how is promotion of safety affected when the products at hand are 
sophisticated self-learning systems? 

 
involving products liability claims due to GPS navigation orders that caused a bus to crash 
into a bridge whose height was below the height restriction for buses); Turner v. Isecuretrac 
Corp., No. 03CA70, 2004 WL 944386, at ¶ 23 (Ohio Ct. App. Apr. 28, 2011) (accepting that 
a GPS ankle device was a “product” under products liability laws, without questioning it).  

143.  WAZE, https://www.waze.com (last visited Nov. 3, 2018). 
144.  FAQ, WAZE, (July 8, 2013), https://web.archive.org/web/20130708113343/http:// 

world.waze.com/faq. 
145.  Israeli Family Accidentally Enters Ramallah, ARUTZ SHEVA (Feb. 24, 2018, 

10:57 PM), https://www.israelnationalnews.com/News/News.aspx/242361; Chana Roberts, 
Three Israelis Accidentally Enter Ramallah, ARUTZ SHEVA (Dec. 10, 2016, 4:50 PM), 
https://www.israelnationalnews.com/News/News.aspx/221510. 

146.  According to opponents of the products liability regime, empirical evidence 
indicates that products liability has not been shown to significantly increase the safety level 
of products. This is so, the argument goes, because in most cases market powers as well as 
regulatory measures are themselves responsible for increased safety, such that the 
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Generally speaking, manufacturers of such systems might find themselves 
in a place where enhancing safety is very difficult or expensive, or will render 
the system inefficient. This point may be explained through the example of a 
futuristic system of a “robo-doctor” that would potentially be able fully to 
replace a human physician at all stages of decision-making.147  

First, manufacturers of traditional products have a finite number of 
parameters to consider when preparing for different scenarios and minimizing 
risks associated with the actions of their machines.148 By contrast, robo-doctor 
manufacturers will have an enormous number of scenarios against which they 
must try to take precautionary measures, based on innumerable parameters: the 
patient’s general medical condition (blood type, vital signs, height, weight, 
etc.), past medical conditions (previous lab results, previous diagnoses, 
previous success or failure of past treatments, etc.), as well as current medical 
condition (e.g., for cancer diagnosis: type of cancer, its size, its location, its 
stage, which receptors it has, etc.); various external parameters (Are any 
epidemics indicated in that region? Do current weather conditions affect the 
likelihood of a certain diagnosis or the chances of success of a certain 
treatment? Should a certain blossom in the air be taken into account when 
assessing the reason for a symptom?); practical parameters (Are qualified staff 
available immediately to execute a certain medical choice? What is best 

 
incremental addition in safety attributed to products liability litigation is non-significant. 
Polinsky & Shavell, supra note 105, at 1462-69. Either way, both proponents and opponents 
of the products liability regime agree that when the public and regulators’ level of awareness 
of the danger or damages caused by the product is low (for instance, because the product is 
not widely sold, because the media coverage of the damage is not significant, because the 
damages are difficult to trace back to the product or are only discovered after a long time, 
etc.), regulation and market forces will be less effective in promoting optimal safety. 
Goldberg & Zipursky, supra note 79, at 1941; Polinsky & Shavell, supra note 105, at 1449. 
General technological and social trends may result in damage being more easily and quickly 
discovered, and gaining more public exposure. To take the damage caused by the Therac-25 
as an example, time improved safety mechanisms would likely have allowed the machine to 
check the dosage it administered in practice, and thus immediately discover discrepancies. In 
addition, nowadays reports on over-dosage caused by a radiation machine would probably 
rapidly ‘go viral’ due to globalization and the social media effects (as opposed to the Therac-
25 accidents that occurred in the 1980s of which the public was not aware for many months). 
Indeed, systems causing damage nowadays are likely to attract greater attention from both 
the public and regulators than did systems that caused harm decades ago. In this sense, 
products liability in general perhaps is less critical today for increasing safety than it was in 
the past. But said difference does not stem from the difference in function or abilities of 
traditional products versus sophisticated ones but from general trends. As such, they are 
beyond the scope of our current discussion. 

147.  For discussions on such futuristic systems and their possible characteristics see 
generally Alex Woodie, The Robo-Doctor Is [In], DATANAMI (Aug. 30, 2017), 
https://www.datanami.com/2017/08/30/the-robo-doctor-is-in/; Michael MacRae, The Robo-
Doctor Will See You Now, AM. SOC’Y OF MECH. ENG’RS (May 2012), 
https://www.asme.org/engineering-topics/articles/robotics/robo-doctor-will-see-you-now. 

148.  To take a simple example of a coffee machine: verifying that the temperature of 
the liquid produced by the machine is not too hot, verifying that even if operated by a child 
the machine could not cause electrocution, etc. 
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practical choice in cases of understaff, or of shortage of specific medications in 
the hospital’s stock?); ethical parameters (What does the patient truly want? 
How does it reconcile with ethical standards as well as the relevant 
legislation?).  

Secondly, in addition to all the foregoing parameters and scenarios, 
manufacturers have to deal with information fed into the system by external 
systems, especially considering the Internet of Things revolution that is 
expected to connect “real world objects”149 and allow machines to 
communicate with themselves directly, without human involvement.150 The 
prospect, therefore, is that in the future, algorithms will have to rely on 
parameters fed to them by other machines151—such as a robo-doctor factoring 
blood pressure and heartbeat rates broadcast to it by a separate medical device, 
and perhaps having to assess the probability that said device has provided 
erroneous readings. 

Thirdly, medicine, like other professional fields, changes constantly. Do 
we expect manufacturers to have their products updated daily (or even hourly) 
with every new study, while immediately incorporating that study’s findings 
into the robo-doctor’s decision-making process? Who will decide which studies 
should be updated and which are not convincing enough, or which are less 
relevant to the specific population treated by that robo-doctor? Having to 
account for such dynamic developments, the manufacturers’ task in minimizing 
risk of error is undoubtedly far more difficult than in the case of static fields 
where products need not be subject to frequent updates.152 

Fourthly, this also leads to another unique challenge for manufacturers of 
thinking algorithms: medicine, like law and many other complex fields where 
judgment and discretion are significant, is not black and white. Different 
experts have different opinions and recommend different solutions under 
identical circumstances. How can manufacturers be expected to minimize the 
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See, e.g., Melanie Swan, Sensor Mania! The Internet of Things, Wearable Computing, 
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(2012). 
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Surveillance: Interview with Katherine Hayles, 24 THEORY, CULTURE & SOC’Y 349, 349 
(2007); Katherine Hayles, Unfinished Work: From Cyborg to the Cognisphere, 23 THEORY, 
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151.  See, e.g., Adam Thierer, The Internet of Things and Wearable Technology: 
Addressing Privacy and Security Concerns Without Derailing Innovation, 21 RICH. J.L. & 

TECH. 1, 4-17 (Feb. 13, 2015. 
152.  Complex as an autopilot system might be to design, for example, its manufacturers 

are not likely to encounter daily updates in the field of aviation (or meteorology, atmospheric 
science, etc.) that would require them to decide whether the new information is relevant to 
the design of the system and, if so, how the system should take the updates into account.  
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risk of certain scenarios by choosing a specific course of action, when the 
choice is not necessarily obvious? (In any event, if the matter is ever litigated 
the manufacturer could always be blamed for not choosing a different 
alternative that some experts preferred.) 

Lastly, even if raising the safety level despite the countless scenarios would 
be possible (and not prohibitively costly), manufacturers of thinking algorithms 
will still have a very difficult time improving the rates of correct decisions of 
their systems from high to very high if they wish to keep the system efficient 
and user-friendly. For example, if the robo-doctor has to include in its decision-
making process each and every possible medical condition, including extremely 
rare ones or implausible ones (in order to reduce the chances of misdiagnosis, 
even for the most unusual cases), it might not be able to be put to practical use. 
The extra time required for the system’s information gathering and analysis 
process might make the process excessively long, make the system fail to 
respond in real-time, make patients refuse to tell their medical history if the 
process is so slow, or disincentivize hospitals from purchasing robo-doctors 
due to their inefficiency compared to humans.153 

In sum, the factors affecting how much a manufacturer of a sophisticated 
system could indeed increase its safety are these: the size of the matrix of 
parameters the algorithm must consider before making a decision,154 the 
dynamic nature of the relevant professional knowledge, the lack of clear right 
choices, and the extent of trade-off between safety and efficiency. But these 
parameters are all very general, and deduced from an extreme example of a 
robo-doctor—a machine that wholly replaces one of the most complicated 
human professions. To try to concretize the parameters that affect 
manufacturers’ ability to increase safety, hence to meet the first rationale of 
products liability, let us now analyze our set of two more delineated examples 
of radiation and navigation systems. The analysis centers on the level of 
foreseeability of the product’s actions, as well as how far the manufacturer is 
able to control said actions, and do so efficiently (assuming that the less a 
 

153.  On the inherent trade-off between safety and efficiency in the field of robotics, see, 
for example, Christiana Braz et al., Designing a Trade-Off Between Usability and Security: 
A Metrics Based-Model, in HUMAN-COMPUTER INTERACTION–INTERACT 2007: 11TH IFIP TC 

13 INTERNATIONAL CONFERENCE; RIO DE JANEIRO, BRAZIL, SEPTEMBER 2007; PROCEEDINGS, 
PART II, at 114 (Cécilia Baranauskas et al. eds., 2007. For a discussion on said trade-off in 
the pharmaceutical field, see, for example, Tomas J. Philipson & Eric Sun, Is The Food and 
Drug Administration Safe and Effective?, 22 J. ECON. PERSP. 85 (Winter 2008). 

154.  An added complication that increases the magnitude of scenarios a manufacturer 
must prepare for is when parameters are not binary but can be anywhere on a spectrum; this 
is even more so when the parameters are not deterministic but in themselves reflect 
probabilities. The parameter of a patient’s past medical history of a stage 3 carcinoma, for 
example, does not reflect one hundred percent certainty that indeed this was the exact 
medical condition the patient suffered from. Rather, it reflects a certain probability that 
indeed the diagnosis was correct.  
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manufacturer is able to foresee and control the choices of its system, the less 
will it be able to raise the system’s safety levels). To examine this, we shall 
review separately the system’s operation in each of the four OODA Loop 
stages  

a. The OODA Loop—General  

We might not have thought about it this way, but even primitive automatic 
systems may be responsible for all four stages of the OODA Loop (provided 
they yield some sort of physical change). Even a simple drill, for example, 
acquires information about the fact that it has been turned on, and that the 
human operator has pressed the right button for the drill to start. It also 
analyzes the information and makes a decision based on it, in the primitive 
sense of considering that the start button was pushed, along with the fact that 
no safety lock mechanism was initiated, and then it decides to go ahead and 
drill, the drilling being the final OODA Loop stage of execution. But in such 
examples all three first stages of the process are dictated to the system by its 
human operator in an injective manner, leaving full foreseeability and full 
control in the manufacturer’s hand (unless a bug occurs). 

Thinking algorithms replace humans precisely because not only can they 
outperform them in the final physical execution stage, they can also 
automatically access and collect vast amounts of information from various 
sources, of a magnitude that the human brain could not read in decades. These 
algorithms can then analyze these enormous amounts of information that are 
beyond a human’s grasp, and can make complex decisions based on 
probabilities that a human cannot even weigh.155  

The Therac-25 machine, for instance, only acquired information that was 
100% dictated to it by the operator (having turned the machine on, chosen a 
specific treatment mode, inserted the desired parameters for treatment, etc.). It 
analyzed whether it was in a position to start operating, based on pre-
programming that in an injective fashion ordered it to do so when all conditions 
for beginning an operation mode were met, and then blindly decided to go 
ahead and administer treatment—again because it was programmed to do 
exactly that once all the required conditions were met. A new generation 
radiation machine, however, would have more freedom or independence to 
conduct the first three stages of the OODA Loop, such that the manufacturer 
would no longer have full foreseeability or control over them. With respect to 
information acquisition, for example, it is possible that the system itself will 
decide which sources of data to harvest to improve its success rates (be they 
medical publications the manufacturer might not even be aware of, or random 
statistics on such matters as global warming that the system might suddenly 
find are correlated to radiation success rates). With regard to the analysis stage 

 

155.  See, e.g., Ron Bekkerman et al., Scaling Up Machine Learning: Introduction, in 
SCALING UP MACHINE LEARNING PARALLEL AND DISTRIBUTIVE APPROACHES, 1-6 (2012).  
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too, the radiation machine itself might determine how much weight to attach to 
each piece of information it has collected, again based on correlations it itself 
has discovered through its self-learning process. Facing several courses of 
action ranked with different probabilities of success and different expected 
damage, the machine itself might decide which alternative to choose, or 
otherwise decide that its confidence in the preferred option was not high 
enough. Then it will rather call a human for further instructions than decide to 
execute.156 Naturally, the more OODA Loop stages a system is capable of 
performing in a manner not fully dictated by the manufacturer, the less 
foreseeability the manufacturer has as to the final outcome of the process, and 
the less control it obtains over it. 

Therefore, and before delving into each of these stages separately, our first 
parameter indicating that the system is a thinking algorithm that is less 
compatible with the first rationale of products liability (given that reduced 
levels of control and foreseeability would render it more difficult to improve 
safety, as explained above) is the number of OODA Loop stages the systems 
performs in a manner not fully dictated by humans.  

b. “Observe” (“Information Acquisition”)  

As explained above, the information acquisition stage of Therac-25 was 
fully dictated by humans in the loop. A new generation radiation machine, 
depending on its specifications, might raise several separate aspects of lack of 
foreseeability and control by the manufacturer at the information acquisition 
stage. Naturally, when the system trains on closed sets of databases that the 
manufacturer has “fed” it, and later continues to collect information from data 
provided to it exclusively by the manufacturer, the manufacturer maintains 
foreseeability and control over the information acquisition stage. However, 
better results might materialize if the system is free to decide on its own to add 
additional sources of information (for instance, additional medical journals, 
readers blogs on radiation, etc.) as well as more types of information the system 
is interested in (for instance, when reviewing a patient’s medical record, 
collecting information on less trivial types of information such as the day of the 
week the patient was released from the hospital, etc.). In such cases, lack of 
foreseeability by the manufacturer is threefold: first, it cannot anticipate the 
type of parameters the system will choose to collect information on. Secondly, 
it cannot anticipate the sources of information the machine will harvest. And 
thirdly, it cannot anticipate the specific content of the data collected, be it 
content related to external databases such as medical journals (in which the 
more dynamic and routinely updated the database is, the less likely a 

 
156.  See supra note 58 and accompanying text for level 5 of Sheridan’s spectrum. 
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manufacturer is to have foreseeability over its content) or the values of the 
specific medical parameters measured for each patient.157  

Foreseeability and control at the information acquisition stage, therefore, 
are reduced if the system can decide on its own what type of information to 
seek or which sources of information to cover, and the more dynamic its 
information sources are.  

To move to our second set of examples, from the navigation world, here 
both the traditional GPS and its sophisticated Waze counterpart are engaged in 
the information acquisition stage. In the case of the traditional GPS, the 
manufacturer has full foreseeability and control over the data acquired, since 
the system is based only on maps uploaded by the manufacturer itself (as a one-
off occurrence when the system is released to the market and through updates 
that the manufacturer sends to the system or the user downloads from the 
manufacturer’s website).  

The manufacturer, however, does lack control over information that has 
changed from the time the maps were updated until the actual usage of the 
system (roads closed since the last update, regions that have become hostile, 
bridges built with a maximal height cap, etc.). Likewise, manufacturers will 
probably have limited foreseeability with respect to such changes (major 
changes may well be planned and advertised in advance and thus are 
foreseeable, but small or temporary changes might be executed without the 
manufacturer learning about them in advance). 

How do the foreseeability and control elements change when the system is 
not based on maps uploaded by the manufacturer, but on information sent by 
the users themselves in real time? 

Naturally, the system’s being based on real-time reports sent by millions of 
strangers limits the amount of foreseeability of said reports. (The manufacturer 
can assume, for instance, that reports are unlikely to come from vehicles 
driving in mid-ocean, but in general which new routes users will report driving 
on, etc. cannot be anticipated.) Likewise, the manufacturer has no control over 
the content of information received (later, at the information analysis stage, it 
may decide to disregard certain types of information that it suspects are 
unreliable. But the content of information sent and acquired is within the 
control of the system’s users, rather than its manufacturer’s). 

In fact, not only does the manufacturer have limited foreseeability as to the 
content of information the system relies on, and not much control over it, but 
the communal nature of the information acquisition stage makes the system 

 

157.  The manufacturer, for example, cannot foresee that a certain patient will be O+ 
blood type rather than A+ (particularly if said blood type is not much more common than the 
others). It can anticipate, however, that the patient will be one of the A+/A-/B+/B-/AB+/AB-
/O+/O- blood types, and not, say, a whole new blood type M+. In addition to limited 
foreseeability, control over said content is also problematic, in the sense that the 
manufacturer does not dictate the specific values of the patient but also in the sense that the 
system might be fed erroneous information beyond the manufacturer’s control (potentially 
by other systems connected to it via the internet of things). 
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vulnerable to intentional false reports. (For instance, users wish to game the 
system to divert other drivers from their own neighborhoods and reduce 
traffic;158 or even, hypothetically, psychopaths may attempt to swamp the 
system with false reports of a new road built over a lake, only to have the 
system plunge innocent drivers into it.) The manufacturer can take precautions 
to try to discard false information (accepting information only from users who 
previously have provided information that proved true, accepting information 
only when a set minimal number of users support it, accepting certain types of 
potentially dangerous pieces of information only after a Waze representative 
has physically visited the location to verify it, etc.). Precautions such as these 
are relevant in the context of the next OODA Loop stage of information 
analysis, rather than information gathering where the system depends on input 
from users. 

On the other hand, compared with traditional GPS, Waze minimizes the 
lack of foreseeability aspect associated with recent changes that occurred after 
the system was released, or at least shortens its duration. This is because the 
system learns of such changes in real time and adds the missing information as 
soon as a sufficient number of reports is received. 

So in general, and as may be intuitively expected, a system based on 
information received from its users is characterized by less foreseeability and 
control than in the first OODA Loop stage. On the other hand, a system based 
on information received in real time (rather than on information collected once, 
or with long spells between collections) is likely to suffer less from lack of 
foreseeability with respect to updates and new information.  

c. “Orient” (“Information Analysis”) 

As with the stage of information acquisition, Therac-25 was not involved 
in information analysis: the analysis was done externally, by humans. The new 
generation radiation system, on the other hand, has a significant role in the 
analysis stage, and as a result lowers the manufacturer’s level of foreseeability 
and control over said stage. In more detail, the system’s mere computational 
abilities, which enable it to weigh up the various complex parameters collected 
in the previous stage, do not impair the manufacturer’s foreseeability or 
control. Even if the manufacturer cannot perform the computation tasks itself, 
the information analysis stage is perfectly foreseeable and controllable; the 
manufacturer is the factor that decides how much weight the system should 
give each parameter, and which collected pieces of data to disregard altogether. 
The manufacturer can decide, for instance, that a patient’s age should only be 
 

158.  Alissa Walker, Is It Really Possible To Trick Waze To Keep Traffic Off Your 
Street?, GIZMODO (Nov. 18, 2014, 4:42 PM), https://gizmodo.com/is-it-really-possible-to-
trick-waze-to-keep-traffic-off-1660273215. See also Nicholas Tufell, Students Hack Waze, 
Send in Army of Traffic Bots, WIRED (Mar. 25, 2014), https://www.wired.co.uk/article/waze-
hacked-fake-traffic-jam. 
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considered when the patient is very young or old, or decide that much weight 
should be given to the fact that a patient has a history of prior tumors and the 
system will conduct its computational analysis accordingly. New generation 
machines, however, are likely to be more than sophisticated calculators. Rather, 
the whole uniqueness of advanced systems is that they can learn for 
themselves, at much better success rates than humans, how much weight to 
attach to each parameter based on prior experience. In such cases it is the 
machine that will decide how far to consider a patient’s medical history, her 
susceptibility to allergies, or a new controversial study published in a medical 
journal. The manufacturer’s ability to increase control and foreseeability by 
setting boundaries is limited in the information analysis stage because it can do 
so mainly sporadically, and with respect to the weight to be given to certain 
parameters that the manufacturer knows in advance will be part of the system’s 
analysis. Here too, the more dynamic the database the system draws 
information from, the less able a manufacturer is to pre-instruct in a broad 
manner that certain weights be given to certain parameters.  

On the other hand, the navigation sets of examples seem less revealing in 
the context of the second OODA Loop stage, as the differences between the 
traditional GPS and Waze are less evident.  

In general, the manufacturer of a traditional GPS has ample foreseeability 
and control over the analysis stage of the system. The manufacturer dictates in 
advance how much weight be given to the different parameters (for instance, if 
a map shows that a road is closed, the manufacturer will likely instruct the 
system to attach 100% weight to said piece of information and disregard the 
existence of this road when calculating a route). Users themselves may also 
influence the analysis stage of the GPS (for instance, by instructing it to avoid 
toll roads, or to present the shortest route as opposed to the fastest route, etc.). 
But it is the manufacturer that designed these choices that users may make, 
hence these choices are foreseeable and controllable. As mentioned, traditional 
GPSs’ lack the information that has changed since the last update of the system, 
but precisely because such information is not part of the data that the system 
analyzes there is no sense in foreseeing or controlling how the system would 
analyze it because it simply will not.  

With Waze, the real-time character of the updates might cause the system 
to attach different weights to similar reports, based on the volume of the reports 
(for example, the system is likely to give much weight to 300 reports of a 
traffic jam on a country road usually not taken by many cars, and only little 
weight to two reports of a traffic jam at a very busy intersection). The decision 
on how the weight ought to change based on the number of reports and other 
parameters, however, is predetermined by the manufacturer and in that sense is 
foreseeable and controllable. In addition, the manufacturer is free to decide to 
attach zero weight to (in other words fully disregard) reports it deems 
“suspicious.”  

Moreover, real-time updates that will add new unknown information and 
will force the system to decide how much weight to attach to such pieces of 
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data can be predetermined. For instance, if the new information indicates any 
sort of danger, the system will attach maximal weight to it and verify that no 
driver is directed to the danger zone until it is proven safe, if the new 
information indicates an unfamiliar new road the system will not direct users 
there until a certain volume of reports has been received, etc. 

The crowd-sourced and the real-time nature of Waze, therefore, do not 
seem highly significant in regards to the foreseeability or controllability of the 
information analysis stage. 

d. “Decide” (“Decision Selection”) 

Having attached different weights to the myriad of parameters collected 
through the information acquisition process, and having analyzed it, a system 
also responsible for the third OODA Loop stage now has to make a decision 
based on said analysis. This stage involves more than might meet the eye, at 
least for thinking algorithms. Unlike a coffee machine, for instance, whose 
decision-making process is generally based on two deterministic options, pour 
coffee or do not pour coffee, a thinking algorithm might face numerous 
alternatives, each based on probabilities and each accompanied by a certain 
level of confidence that indeed said alternative entails said probabilities. After 
analyzing the information it has acquired, a new generation radiation machine, 
for example, might come up with dozens of potential treatment dosages, each 
entailing different probabilities of success and expected damage. The 
algorithm’s ranking may, for instance, include an option with success rates of 
90%, entailing damages of 3,000 units159 for the 10% of failure; an option 
successful 80% of the times, entailing damages of 1,000 units in the 20% cases 
of failure; and a long list of alternative dosages of different success rates and 
expected damage.  

Moreover, like a human physician, the algorithm cannot be 100% certain 
that said alternatives indeed reflect the probabilities and expected damages the 
algorithm assumes they do. The algorithm can, for example, determine that it is 
95% confident that the first option indeed has a 90% probability of success and 
a potential of causing damages of 3,000 units, and is only 70% confident that 
the second option indeed reflects the rates indicated. Our decision selection 
stage, therefore, involves some tough questions for an algorithm. First, does it 
give more weight to potential success rates or to potential damages? (Under the 
first alternative success rates are 90% and expected damages are 10% X 
3,000=300 units. Under the second alternative success rates are only 80%, but 
on the other hand expected damages are lower: 20% X 1,000=200 units. Which 
is preferable? When the units do not reflect dollar amounts but, for instance, 

 
159.  While in many cases “units” would be translated into dollar amounts (for instance, 

in litigation fees), in other cases the units of damages themselves would be less concrete, for 
instance, numerical estimations of the physical damage or suffering caused to a patient 
whose treatment failed.  
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pain and suffering to a patient, the decision is no longer a matter of mere 
economic computation) Secondly, how does confidence level affect the choice 
among the various options? Should the algorithm defer to a human whenever 
the rate of confidence of its preferred alternative is lower than a certain 
threshold? (Will the algorithm itself decide that it has to consult with a human, 
or will the threshold be predetermined by the manufacturer?) 

A manufacturer’s level of foreseeability and control naturally depends on 
how these questions are answered, or, more precisely, who, gets to decide these 
questions. With respect to the radiation machine the manufacturer may decide, 
for example, to adopt a more careful approach, where a machine is not free to 
decide on an alternative whose expected damages are more than a negligible 
percentage, and that whenever its level of confidence is below a very high 
threshold it must step back and let a human decide. Such an approach, however, 
will naturally be at the expense of efficiency (as in many cases the machine will 
not be able to automatically complete the process but will have to wait for a 
human to arrive and make her decision). Naturally, if the situation calls for 
instant treatment (for instance in a system used in a trauma unit) having to wait 
for a person might cost lives. Also, if from the outset the system’s success rates 
are higher than the human counterpart’s, from a utilitarian point of view we 
would prefer the machine to make such decisions, not the humans involved160 
(leading, again, to greatly reduced extents of foreseeability and control by the 
manufacturer).  

The more the system’s response time is critical, and the wider the gap 
between a human’s and a machine’s success rates (in favor of the machine), the 
more likely will the manufacturer be forced to forego foreseeability and control 
at the decision-making stage, and free the system to make its own choices.  

Unlike a traditional GPS, which decides based on deterministic parameters 
(such as distance and existence of available roads), Waze makes its decisions 
based on probabilistic parameters that change constantly.161 Being a “real-time 
service,” Waze cannot wait for a human in the loop to assist it whenever its 
level of confidence is not sufficiently high, which again makes the system less 
foreseeable and controllable. But unlike a radiation machine, Waze is not 
intended to save lives, and therefore enjoys the luxury of being able to hedge 
risks. If the system has indications that a certain road is not safe (is under 
construction, leads to a danger zone, etc.) its manufacturer may theoretically 
decide in advance to eliminate such an option entirely until it is proven safe (at 
the expense of directing users to less efficient routes). Life-saving or medical 
algorithms, however, do not generally have this option, otherwise any choice 
they made would entail certain risk. Foreseeability and control (hence 
compatibility with the rationale of promoting safety) are thus reduced in such 
systems.  

 
160.  Millar & Kerr, supra note 41, at 103; Lieblich & Benvenisti, supra note 66, at 246. 
161.  Such as the degree of traffic expected at a certain location at a certain point in time 

when the user is expected to cross said location.  
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e. “Act” (“Action Implementation”) 

Neither of our radiation and navigation systems, whether the traditional or 
the “thinking” type, has ever replaced humans in the final OODA Loop stage of 
action implementation (GPS/Waze because they do not have an element of 
execution to begin with, Therac-25 and the new radiation system because the 
projection of the beams was never a process that a human performed). To touch 
on the stage of action implementation, let us therefore think of a robo-surgeon 
(for instance, the da Vinci system162), and focus solely on its execution rather 
than the decision-making process of how to execute. With respect to said 
specific stage, there is no learning element. Just like a traditional product, 
therefore, the system is foreseeable and controllable as long as it does not 
encounter bugs. 

f. Interim Summary and Measurability of Success Rates 

An analysis of the four stages of the OODA Loop and the levels of 
foreseeability and control associated with each in respect of our two examples 
of learning algorithms, revealed that the following parameters tend to reduce 
the system’s compatibility with the rationale of encouraging manufacturers to 
promote safety: the greater number of the OODA Loop stages the system is 
responsible for, a system’s freedom to decide which sources to draw data from, 
a system’s freedom to decide which parameters to consider, the dynamic nature 
of the information sources relevant in the field of the system, use of crowd-
sourcing to obtain information, the urgency of the process the system is 
involved in (or the requirement of real-time actions), whether the system is life-
saving (such that reduction of efficiency to increase foreseeability is very 
problematic), whether the system’s success rates are already higher than those 
of a human equivalent (which again would render sacrificing efficiency to 
promote foreseeability more problematic), and whether the system considers 
real-time updates by its users (interestingly, this characteristic may work both 
ways: on the one hand its content may surprise the manufacturer, but on the 
other hand it may decrease unforeseeability associated with data that have 
changed without the manufacturer’s knowledge).  

Naturally, this is only an initial list of parameters, and additional examples 
might yield additional parameters. But it does give us a notion of the types of 
systems that should be classified as “thinking algorithms,” in the sense that 
improvement of their safety by the manufacturer is more difficult to 
accomplish.  

In addition to these parameters that impede improvement, another general 
parameter to take into account is how easily improvement is measured. The 

 
162.  The da Vinci is a minimally invasive robotic surgery system that translates a 

human surgeon’s hand movements into smaller more precise movements. DA VINCI 

SURGERY, http://www.davincisurgery.com (last visited Dec. 27, 2018). 
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success rates of certain systems are fully measurable (annual number of car 
accidents autonomous vehicles are involved in per miles traveled, number of 
fatalities per miles traveled, etc.), but other systems’ success rates may well 
measure the rates of false negative failures but not the false positive ones, or 
vice versa (failure rates of a bail algorithm which approved bail for defendants 
who later broke the bail rules are easily measurable while the rate of defendants 
who were denied bail, even though they would have not broken its rules if 
given the opportunity, is not). It may be difficult or almost impossible to 
measure success rates of other systems (for example, success rates of Waze, of 
algorithmic company directors, or of algorithmic priests). Measurability of 
success or failure does not directly contribute to manufacturers’ ability to 
improve their systems’ safety, yet it does give them a clear picture of the 
system’s performance, and may encourage them to try alternative designs until 
better results are measured (even if manufacturers cannot explain why such 
designs work better than the previous ones, in light of lack of foreseeability and 
control difficulties).163 The extent to which the system’s failure rates are 
measurable, then, may assist manufacturers improve their systems’ safety level, 
therefore indicates compatibility with the first rationale of products liability 
law.164 

2. Avoiding a Chilling Effect 

It has been argued that in certain industries, the application of products 
liability not only failed to achieve an increase in safety (or in victim’s 
compensation, which will be discussed next), but led to higher production 
prices resulting in a suboptimal level of manufacturing or use of beneficial 
technologies.165 Although the avoidance of a chilling effect and the promotion 
of an efficient level of use are not the main rationales behind products liability 
and are rather competing interests, the shaping of the products liability 

 
163.  When Facebook decided to change its news feed algorithm, for example, the team 

admittedly did not know how the change would affect the algorithm and its choices. Rather, 
to implement a change, many trial-and-error experiments are required. Will Oremus, Who 
Controls Your Facebook Feed, SLATE (Jan. 3, 2016), http://www.slate.com/articles/ 
technology/cover_story/2016/01/how_facebook_s_news_feed_algorithm_works.html. 

164.  For some systems, exact measurement of failure or success rates might be possible, 
but only after the passage of time. Mortality and morbidity rates associated with a new 
generation radiation machine, for instance, will only be revealed years after its release. 
During the time when statistics are unavailable, the “measurability” parameter will incline to 
the “non-compatible with products liability framework,” but as soon as it becomes available 
the system can be treated as more inclined to products liability compatibility.  

165.  According to Polinsky and Shavell, for instance, products liability led to an 
astronomic increase in the price of the DPT vaccine, leading to significant under-
vaccination. Similarly, litigation costs associated with products liability claims in aviation 
led to a dramatic increase in sales prices and to suspension of production by leading 
manufacturers. Supra note 105, at 1474.  
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framework was significantly affected by said interests.166 Our analysis will 
therefore include these interests and examine how different parameters of 
sophisticated systems affect concern over a chilling effect.  

In general, the literature addresses concerns that products liability will have 
a chilling effect on sophisticated systems.167 According to said concerns, the 
volume of products liability claims associated with such systems is expected to 
be high, given the increasing number of cases where damages are not caused by 
a human tortfeasor but by a system that has replaced her, and since in general 
the introduction of new technologies has traditionally resulted in an increase of 
tort claims associated with it.168 In addition, as a result of globalization and 
social media, manufacturers will probably receive more post-sale reports 
regarding the actual use of their products than in the past, advising them of 
additional potential risks not anticipated in advance. Such additional reports 
will impose warning requirements on the manufacturers that, when not 
followed, will be used against them in failure to warn products liability 
claims.169  

Naturally the less foreseeable and controllable a system is, the greater the 
fear of a detrimental effect on technology. First, and as discussed above, lack of 
foreseeability and controllability (divided into its sub-characteristics) render it 
more difficult for a manufacturer to improve safety, at least for a subset of the 
innumerable scenarios possible.170 In such cases, products liability will not 
necessarily contribute much to safety but will likely result in higher production 
costs that will translate into reduced manufacturing of certain systems due to 
less demand. Moreover, lack of foreseeability is likely to render liability costs 
less predictable, and in turn again delay development or result in high costs.171 

 
166.  Promoting an efficient level of usage, however, was discussed as a sub-rationale in 

the context of deciding between applying strict products liability versus a negligence-based 
standard. In general, concern over a chilling effect swung the pendulum of the products 
liability framework in the latter direction. See supra Part II. 

167.  See, e.g., Colonna, supra note 8, at 84; see also Kevin Funkhouser, Paving the 
Road Ahead: Autonomous Vehicles, Products Liability, and the Need for a New Approach, 
2013 UTAH L. REV. 437, 452-58.  

168.  Colonna, supra note 8, at 110 (focusing on the biotechnological industry as an 
example of a “severe barrier for innovation” caused by products liability). 

169.  See RESTATEMENT (THIRD) OF TORTS: PROD. LIAB. § 10(b) (AM. LAW INST. 1998) 
(imposing post-sale warning requirements when the seller knew or should have known of a 
substantial risk of harm). Alternatively, it could be argued that the volume of products 
liability claims will not increase with the introduction of sophisticated decision-making 
systems but in fact might decrease, given the improved safety rates expected of these 
products, which will reduce the general occurrences of damage. Villasenor, supra note 20, at 
4-5 (reviewing how in-car automation devices of several sorts have led to a reduction in the 
frequencies of liability claims).  

170.  See supra Part IV, B.1. 
171.  Smith, supra note 20, at 6. Granted, for systems with a potential to cause damage 

that may be used by the user repeatedly, such as autonomous cars, we would want their 
prices to reflect a certain amount of risk for damage, in order for the user to internalize 
expected damages costs and use the system efficiently (for instance, not send its vehicle for 
rides around the neighborhood just as a joyride). Polinsky & Shavell, supra note 105, at 
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Secondly, also as discussed above, naturally the better result a system has 
compared with a human equivalent, and the speedier its response, the more 
decisions will we be likely to entrust it with, leaving humans outside the 
loop.172 So for systems with results that show superiority over humans, fear of 
a chilling effect (in the form of decreased development, decreased demand due 
to high price, or reduced efficiency resulting from clumsy safety measures that 
render the system too slow or non-user-friendly) is of greater concern. To give 
a concrete example: to decrease products liability litigation risks, the 
manufacturer of the new generation radiation system may design the system to 
be more foreseeable. For instance, it will feed it with the information it learns 
and not allow it to search independently for relevant sources of information, or 
it will heavily intervene and dictate the weight the system will attach to 
different parameters, not leaving the system discretion to decide based on its 
past experience. By doing so, manufacturers might increase foreseeability and 
control, but will not necessarily improve the system’s outcomes compared to 
both older versions of the system or humans. Assuming society wishes to 
promote the development of such a better technology (which is perhaps 
conceptually easier once the system already outperforms humans and is thus 
expected to save lives or reduce injuries), products liability might be over-
burdensome on certain technologies.  

3. Victims’ Compensation 

Generally, products liability has been accused of not being an optimal 
regime with respect to compensating victims for their damages, given the high 
costs associated with products liability litigation that render many damage 
cases not actionable,173 and lead to significantly reduced compensation for the 
victim in cases that are filed due to legal fees.174 How is victims’ compensation 
affected by the characteristics of the damaging product? Unlike the case with 
the first products liability rationale of promoting safety, the particular abilities 
of each algorithm will likely not play a crucial part in affecting victims’ ability 
for redress, although some more general characteristics will.  

 First, in many cases insurance of various types may render products 
liability redundant, as damages claims of insured victims might be covered in 

 
1459-61. Similarly, and as discussed in Part II above, one of the goals of the products 
liability framework is to have the manufacturer internalize the costs associated with the 
damages it might cause. But the more unpredicted these costs are, the less likely 
internalization of them is to reflect the actual value of such costs. 

172.  Abbott, supra note 26, at 18; Millar & Kerr, supra note 41, at 103. 
173.  Given that the expected litigation costs exceed the expected reward for the damage 

suffered by the product, for instance, in car accidents where no significant physical injury 
was caused. Hubbard, supra note 94, at 1827-29; Gurney, supra note 97, at 265-66.  

174. Polinsky & Shavell, supra note 105, at 1469-70 (reviewing empirical studies that 
found plaintiffs receive only 37– 57% of the amount paid by defendants).  
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full by insurance, which eliminates the need for litigation.175 Indeed, in the US 
certain types of insurance, including life insurance, health insurance, disability 
insurance, property insurance and car insurance, are prevalent.176 A significant 
amount of damage cases caused by products are nevertheless uninsured, 
whether because not all victims have insurance or because the insurance does 
not cover the full amount of the damages suffered.177 From the standpoint of 
assuring victims’ compensation, the general conclusion is that products liability 
is needed more when the type of activity of the system, or the type of potential 
damage it may cause, are covered less by insurance than by other systems.178 
But this is true regardless of thinking algorithms or of the debate over which 
tort legal framework ought to apply to autonomous systems. What may be said 
more specifically about thinking algorithms? One distinction is that the more 
foreseeable the system (based on the various parameters discussed above), the 
more willing insurance companies are likely to be to offer insurance at 
reasonable premiums. This contrasts with algorithms that are less foreseeable, 
hence are associated with more uncertainty as to the expected amount of 
damage claims brought against the manufacturers and their expected outcomes, 
which might render insurance companies reluctant to insure the product at 
premiums that are not exceedingly high.179 The division between more 
foreseeable and less foreseeable algorithms (again, based on the distinctions 
made above) in the context of availability of insurance is more relevant when 
the system is new to the market, and statistics of its performance are not yet 
available. Once experience is gained as to the system’s rates of causing 
damage, the fact that such a system’s choices are not foreseeable in the context 
of each specific user is insignificant. Rather, insurance companies will look at 
the “big picture” of damage claims brought and won over time. The effect of 
lack of foreseeability resulting in less available insurance, resulting, in turn, in 
more compatibility with products liability rationales, is therefore temporary 
after the product was launched. Despite this, for certain systems, especially 
medical-related ones, the duration might be very long considering long-run 
damages that might appear only years after the user’s encounter with the 
system.  

Second, in the absence of full coverage insurance, another major 
consideration affecting victims’ ability to receive compensation is whether an 
attorney will agree to take their case. Under the contingency fee structure 
typical of products liability, that likelihood is affected not only by the 

 
175.  Id. at 1441. 
176.  Id. at 1462.  
177.  Id. at 1463. 
178.  Damages caused by car crashes, for example, are rarely brought to courts, because 

such damages are usually covered by automotive insurance. Smith, supra note 20, at 33.  
179.  Hubbard, supra note 94, at 1816 (“[T]here may well be no such data available to 

insurers where a seller seeks liability insurance for an innovative sophisticated robot. As a 
result, products liability insurers may be very concerned about the potential for high claims. 
Therefore, insurance may be hard to get, very expensive, or both.”). 
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attorney’s estimation of the probability and magnitude of success, but also of 
the expected costs.180 The longer the case is expected to last, for instance, due 
to its technical complexity and the need to hear more expert witnesses, the less 
likely attorneys will be to take a risk and accept a products liability case.181 
 Under the prevalent risk utility test for design defects, a victim must show 
that efficient safer designs of the system were within reach.182 This might 
require the involvement of more than one expert witness, thus rendering the 
procedure cost-prohibitive.183 The number of experts needed, hence the 
complexity, duration and cost of procedures, will probably depend on the 
system’s field of operation, and whether it replaces human professional 
judgment or not. For example, in a products liability suit against a Roomba 
vacuum cleaner for injuring a user by catching and pulling her hair,184 a coding 
expert would be required to show that the manufacturer could have efficiently 
programmed the system to prevent such accidents. In fields that involve 
complex professional discretion, such as medicine, engineering or law, it is 
likely that in addition to a code expert testifying on the availability of technical 
programming measures, a professional expert in the underlying field 
(physician, engineer, lawyer, etc.) would also be required to discuss whether 
such measures were available and accessible in the field of expertise (naturally, 
the defendant too will likely arm itself with all types of relevant experts, in 
trying to show that no such measures existed). It could be argued, therefore, 
that systems that replace human professional judgment are more likely to be 
associated with longer and more expensive procedures (due to the additional 
experts required but, quite intuitively, also to the complexity of the matter in 
general) and thus less likely to be litigated.  

A characteristic of sophisticated systems that might affect their 
classification as thinking algorithms for the purpose of applying products 
liability rules is the unforeseeable nature of the system (in each of the OODA 
Loop stages, as discussed above) while statistics of the damages claims 
associated with said system are not yet available: the more unforeseeability 
exists, the more relevant the consideration of compensating the victim becomes 
because insurance will be less available. A second relevant characteristic is 
whether the system replaces professional discretion. If it does, the rationale of 
compensation is less applicable, given that more of these cases will not be 
picked up by attorneys to begin with. Naturally, both these characteristics may 
exist at the same time (for instance, systems replacing professional discretion 
may very likely rely on dynamic sources of information, therefore, as discussed 
above, be less foreseeable).185 In such cases they will simply pull in opposite 
 

180.  Smith, supra note 20, at 38. 
181.  Id. at 38-40; Gurney, supra note 97, at 265-66; Hubbard, supra note 94, at 1826-

28. 
182.  See supra Part II. 
183.  Gurney, supra note 97, at 265-66. 
184.  McCurry, supra note 22.  
185.  See supra Part IV, B.1. 
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directions with respect to the system’s compatibility with the rationale of 
compensating the victim.  

C. Keep It Simple, System  

Having analyzed different features affecting systems’ compatibility with 
the rationales behind products liability laws, this Article discovered numerous 
such features that ought to be considered when deciding whether the system is 
a traditional product or whether a different legal framework should apply to it. 
Not only is the list of said features relatively long (and open to additional 
input), its application in practice is not entirely simple, given for instance that 
certain features might entail more than one effect,186 or that the effect depends 
on additional parameters.187 As can be seen from the two figures below, 
however, using said method as a differentiator between traditional products and 
thinking algorithms is nevertheless much easier and simpler than using a 
system’s autonomy level as a distinguishing method between the two. 

First, while using autonomy as a differentiator requires the user to answer 
different types of questions, many of which are open-ended, and independently 
decide how to factor in all of her general estimations for these questions, a 
purposive analysis differentiator simply and clearly requires adding a “+” sign 
whenever a pre-defined feature exists. Second, while the outcome received as a 
result of the former classification process is a general impression of the 
system’s level of autonomy—without practical guidelines as to how to apply it 
(especially in cases where the result is not definite)—the latter classification 
process yields a clear outcome of the number of “+” signs the system has 
accumulated. Lastly, said outcome has a practical implication, as it doesn’t 
merely reflect the system’s theoretical characteristics, but rather indicates how 
well the system reconciles with the purposes of the products liability 
framework.  

 
186.  For instance, when looking at the feature of “lack of foreseeability and control” as 

a whole, said feature is not compatible with the rationale of promoting safety (as it might 
render improvement of safety excessively difficult, costly or inefficient) but might be 
compatible with the rationale of compensating victims (given that insurance companies 
would less willing to insure, thus rendering products liability more needed as an alternative).  

187.  Looking at the example above where lack of foreseeability and control lead to 
greater need for products liability as an alternative to insurance, said effect is mostly relevant 
during an initial period of time after the system has been introduced to the market, where 
statistics of its performance and potential damages are not yet available. Assuming sufficient 
time has elapsed, the lack of foreseeability and control might be less dominant in the context 
of insurers’ willingness to insure. Given that lack of foreseeability and control are likely to 
lead to longer and more expensive legal proceedings, at a certain point in time the dominant 
effect of this feature on victims’ compensation would be limiting accessibility to litigation 
and thus rendering it again less compatible with products liability.  
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FIGURE 1: Autonomy Level as a Classifier for Thinking Algorithms 

 
 

FIGURE 2: Purposive Interpretation as a Classifier for Thinking Algorithms 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To demonstrate the relative simplicity of the proposed differentiator, as 

well as its de facto value, let us look at the table below comparing different 
types of systems based on this Article’s purposive analysis: Roomba vacuum 
robots, autopilots, autonomous vehicles, and a futuristic “robo-doctor” which 
replaces all functions of a human physician. The analysis used to decide which 
systems deserve which sign in each category is certainly not exhaustive and not 
conclusive—for instance, different types of autopilots may possess very 
different sets of features and thus render the analysis different for each type. It 
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is also based on many assumptions regarding the capabilities and modes of 
operations of the underlying systems. It does, however, demonstrate how the 
features listed in the first column could indeed be used to differentiate different 
types of systems in the context of whether they are compatible with achieving 
products liability rationales.  

 
TABLE 1: Comparing Systems’ Purposive Analyses 

 
 Roomba 

Robot 
Autopilot Autonomous 

Vehicle 
Robo- 
doctor 

Success rates not 
measurable? 

    

Responsible for more 
than 2 OODA Loop 
stages? 

  + + 

Independently selects 
type of info to collect? 

  ? + 

Independently selects 
sources of info to collect 
from? 

   + 

Dynamic nature of 
sources of info? 

   + 

Replaces professionals 
in complex fields? 

 ? ? + 

Life and death nature of 
decisions? 

 + + + 

Real time decisions 
required? 

 + + ? 

 
Success rates not measurable? 

Generally speaking, the success rates (or, alternatively, damage-causing 
rates) of all the four systems are measurable. The measurement of Roombas, 
autopilots, and autonomous vehicles may be conducted based on accident rates 
associated with the use of the system.188 The success rates of a robo-doctor 
may be measured based on mortality and morbidity statistics. None of these 
systems, therefore, render it especially difficult for a manufacturer to measure 
improvement, and in that sense to not impede the safety promotion rationale.  

 
188.  Naturally, in the latter two cases the statistics would be less unequivocal, given 

that certain accidents would be inevitable regardless of how the autonomous system 
functioned. Nevertheless, clear improvement (or dis-improvement) trends may be learned 
and taken into account by looking into the total number of accidents caused while using the 
system (an alternative or additional measurement may naturally be the number of fatalities, 
or the gravity of injuries suffered as a result of using the systems).  
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Responsible for more than two OODA Loop stages? 
As explained above, when analyzing which OODA Loop stages a system is 

“responsible” for, the focus is on stages in which the system’s choices are not 
dictated in an injective manner.189 A Roomba cleaner’s sensors collect 
predetermined information on its environment (the existence of dirt on the 
floor, the existence of obstacles in its path, etc.) and analyze the information 
collected in a predetermined manner (if the robot touches an object, this means 
an obstacle was encountered, etc.). While there is a feature of randomness to 
the Roomba cleaner’s decisions, which leads to execution that is not entirely 
predetermined (the system is designed to randomly try new angles and vectors 
of movement, to increase the chances of overcoming obstacles and to achieve 
even coverage),190 the system is not “responsible” for more than two OODA 
Loop stages. A similar analysis applies to autopilots as well, which collect 
predetermined types of information (altitude, wind velocity, etc.) and conduct 
an analysis of the information gathered in a pre-determined manner (calculation 
of the optimal parameters such as angles and speed needed for the air vessel to 
stay on course or land). Unlike airplanes travelling through almost empty skies 
in terms of potential obstacles, autonomous vehicles must respond to numerous 
(and often) unexpected obstacles as part of their routine tasks. The information 
that the system gathers is therefore not entirely predetermined (as the cameras 
and sensors the vehicle is equipped with might encounter new types of terrain, 
of road conditions or of obstacles that the manufacturers did not foresee). The 
analysis of the information gathered is also not predetermined such that it is 
based on mere calculations. Rather, it is conducted through more human-like 
trial and error self-learning processes that allow the system itself to decipher 
the optimal way to interpret the data received.191 When deciding how to drive 
next, an autonomous vehicle does not have a bottom line calculation indicating 
precisely the right angle for landing or the right speed for preserving altitude. 
Rather, faced with scenarios of potential obstacles interfering with its path, the 
system must decide the least dangerous next move. An autonomous vehicle, 
therefore, seems to be responsible for more than two OODA Loop stages and 
thus gains a “+” sign under that category. A robo-doctor system would also 
likely receive a “+” sign, based on its likely ability to collect information from 
various sources based on its own consideration, to analyze the information 
gathered based on its self-learning (and not in an injective manner based on 
predetermined abilities), and its decision about how to act upon the analyses 
which will reflect a choice between stochastic alternatives based on its level of 
confidence in the results. 

 

189.  See supra Part IV, B.1.i. 
190.  Joshua A. Kroll et al., Accountable Algorithms, 165 U. PA. L. REV. 633, 655 

(2017). 
191. Loz Blain, AI Algorithm Teaches a Car to Drive from Scratch in 20 Minutes, NEW 

ATLAS (July 5, 2018), https://newatlas.com/wayve-autonomous-car-machine-learning-learn-
drive/55340. 
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Independently selects type of information to collect? 
As discussed above, the type of information gathered by Roomba cleaners 

and autopilots is limited to the type of information they were programmed to 
collect: pre-determined parameters concerning their environment. Autonomous 
vehicles, however, respond to scenarios where they encounter new types of 
information it was not instructed to collect (new types of terrain that were not 
foreseeable, extreme weather conditions not foreseeable, a new type of obstacle 
on the road, etc.). While the sources of information the system collects data 
from are indeed predetermined (the vehicle’s environment), the type of 
information is not necessarily so. With respect to a robo-doctor, such a system 
will likely independently choose the type of information it collects (such as a 
patient’s medical history, her current complaints, environmental parameters 
that might affect the diagnosis or prognosis, etc.) as explained above.192 

 
Independently selects sources of information from which to collect? 

As discussed in more detail above, a robo-doctor might indeed be very 
independent in choosing which sources to collect information from, while a 
Roomba cleaner as well as an autopilot would only collect environmental 
information on its surroundings, which their manufacturers programmed them 
to collect. Unless given access to journals and articles focusing on futuristic 
features of automotive or physics that might somehow alter the decision-
making of autonomous vehicles, they too seem to be limited to sources of 
information dictated to them by their programmer (unlike the type of 
information it may encounter).  

 
Dynamic nature of sources of information? 

Roomba cleaners, autopilots, and autonomous vehicles all acquire 
information from their environment, which is characterized by a certain degree 
of dynamism, especially with respect to the latter, where road-related 
parameters change constantly. The need for an ever-updating system, however, 
which adversely affects manufacturers ability to minimize risk as discussed 
above, is more prevalent in the robo-doctor system, as a result of the need to 
take into account new studies and findings that might affect the entire 
conclusion-reaching process of the system.  

 
Replaces professionals in complex fields? 

As discussed above, litigation over damage caused by systems that replace 
professional discretion is expected to be longer and more expensive, because of 
the likely need for additional experts in the underlying professional field. This, 
in turn, would decrease the chances of such cases being brought to court, and 
obstruct the victim compensation rationale. Though it cannot be anticipated in 
advance which experts attorneys would think are necessary for the case, it is 

 
192.  See supra Part IV, B.1. 
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safe to assume that the need for a professional expert (in addition to a 
programming expert) would be more likely in the case of a robo-doctor than in 
the case of a robo-cleaner. As to autopilots and driverless vehicles, while the 
functions fulfilled by the latter are familiar to all drivers, the functions fulfilled 
by autopilots require technical knowledge.193 As a result, it is plausible to 
imagine that accidents involving autopilot would require a longer, more costly, 
and technical presentation to the court.  

 
Life and death nature of decisions? 

Other than the Roomba cleaner, the other three systems entail a significant 
risk to human lives (as a result of an accident or as a result of administrating 
non-effective or dangerous treatment). The desire to produce the maximal 
benefit from these three types of systems, therefore, might come at the expense 
of allowing manufacturers to better foresee and control their results, as 
explained above.194 The rational of safety promotion, would therefore be more 
difficult to achieve for the three latter types of systems.  

 
Real time decisions required? 

As discussed, when real-time decisions are required, manufacturers’ 
flexibility to dictate human intervention (above a certain threshold of risk, 
below a certain threshold of certainty, etc.) is undermined, and, as a result, so is 
the ability to promote safety. To operate smoothly, a Roomba cleaner does need 
to decide and act continuously (for instance, on which direction to turn to next), 
but given the nature of its decisions and these decisions’ lack of urgency, a 
manufacturer is fully free to require human intervention in any scenario that has 
the potential to cause damage. Autopilots and autonomous vehicles, however, 
do not enjoy such flexibility. With urgent decisions that must be made within 
split seconds, both these systems receive a “+” sign. As to robo-doctors, the 
need for urgent real-time decisions is case sensitive, as an ER treatment process 
is very different than an annual physical (the latter allowing the system to call 
for a human decision-maker whenever a damaging scenario is possible). Robo-
doctors therefore receive a question mark under that category.   

Having demonstrated how the different features of Roomba cleaners, 
autopilots, autonomous vehicles, and robo-doctors render them more or less 
compatible with the rationales of products liability, we see how such a 
differentiator is relatively simple and quick to use. Granted, the details of the 
above analyses may vary, thus leading to somewhat different results. In 
addition, the analysis above does not conclusively tell us which products ought 
to be subject to products liability and which ought not to be. It does, however, 

 
193.  For the number of licensed drivers in America, see U.S. DEP’T OF TRANSP. & FED. 

HIGHWAY ADMIN., Total Number of Licensed Drivers in the U.S. in 2016, by State, 
STATISTA, https://www.statista.com/statistics/198029/total-number-of-us-licensed-drivers-
by-state/ (last visited Nov. 27, 2018).  

194.  See supra Part IV, B.1. 
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give us a simple and clear indicator: the fewer “+” symbols there are, the more 
the system can continue to be subject to the traditional products liability 
framework.  

CONCLUSIONS 

Focusing on the legal framework of products liability, this Article offers a 
novel method for determining when damages caused by sophisticated 
algorithms ought to be subject to traditional products liability laws, and when 
an alternative treatment is warranted. 

Naturally, preferring a certain alternative legal framework over products 
liability depends on the characteristics, advantages, and disadvantages of such a 
framework (including, of course, the question of whether manufacturers would 
still be liable for the damage caused or not). Proposals for such substitute 
options have been discussed for decades,195 focusing on aspects of determining 
liability as well as how and by whom damages will be paid. For instance, 
several analogies have been drawn between sophisticated systems and their 
creators and the legal relationship between other entities characterized by 
diminished foreseeability and control over the actions of tortfeasors that are 
subject to them. Examples were the relationship between parents and minor 
children who caused damage,196 between principals and agents197 (specifically 
employers and employees),198 between owners of dangerous animals and their 
pets,199 and even between masters and their slaves.200 Other directions were 
subjecting the systems themselves to a reasonable analysis in order to 
determine whether liability by the manufacturer exists,201 while a different 
approach focused on no fault insurance schemes to cover the damages caused 
by such systems.202  

A comparison of these different approaches, as well as an assessment 
comparing them to products liability, is beyond the scope of this Article. Given 
the increasing calls to stop treating sophisticated or autonomous systems as 
mere products and subjecting them instead to a legal framework other than 
products liability, the focus of this Article was on the more preliminary stage of 
examining which systems warrant the development of such legal frameworks 

 
195.  See, e.g., Lehman-Wilzig, supra note 32. 
196.  Id. at 450-51; CHOPRA & WHITE, supra note 32, at 180. 
197.  Lehman-Wilzig, supra note 32, at 451-52; Asaro, supra note 32, at 178-79; see, 

e.g., CHOPRA & WHITE, supra note 32, at 5. 
198.  Lehman-Wilzig, supra note 32, at 451-52. 
199.  Id. at 448-49; Asaro, supra note 32, at 176-78; Sophia H. Duffy & Jamie Patrick 

Hopkins, Sit, Stay, Drive: The Future of Autonomous Car Liability, 16 SMU SCI. & TECH. L. 
REV. 453, 467-71 (2013); see generally, Richard Kelley et al., Liability in Robotics: An 
International Perspective on Robots as Animals, 24 ADVANCED ROBOTICS 1861 (2010). 

200.  Lehman-Wilzig, supra note 32, at 449-50. 
201.  See, e.g., Chagal-Feferkorn, supra note 21; see also Abbott, supra note 26. 
202.  EUR. PARL. DOC., supra note 28, at 5, 11. 
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and which may continue being subject to existing ones. In doing so, this Article 
found that the current differentiator between traditional products and systems 
warranting a new legal framework—the system’s level of autonomy—is 
insufficient. It found that said differentiator is unduly complex, provides an 
imprecise and impractical tool for differentiation, and might yield inconsistent 
results. This Article then proposed a different approach for distinguishing 
products from non-products for the purpose of applying products liability, 
focusing on the rationales behind the products liability framework and whether 
different features of sophisticated systems are compatible with them or hinder 
them.  

Certainly, the parameters discussed in the Article warrant additional 
individual analysis, as they represent general directions of compatibility with 
products liability rationales, and in specific scenarios might yield different 
results. The examination of additional types of systems from various sectors 
employing various technology features will also likely add to the list of relevant 
parameters. This Article, however, assembled a list of central parameters that 
are relatively easy to identify and classify as existent or not for each system, 
and analyzed whether or not they point to compatibility with the rationales of 
products liability. Decision-makers and scholars encountering a system whose 
parameters clearly indicate one direction or another can therefore use the 
proposed analysis to determine whether to apply products liability or to adopt 
or develop alternative frameworks. 
 
 
 
 


