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Abstract. Utilizing antitrust decisions extracted from the Caselaw Access Project, 
we aggregate—or embed—layers of topic modeling into a single set of 
visualizations. Aggregated models can provide new perspectives on how courts 
tackle thorny doctrinal questions, such as the measure of market power and the 
balance between antitrust and regulation. Our central contribution is the 
improvement of natural language processing to provide greater context for key 
terms. Our secondary contribution is a new suite of tools to assess the weighty 
policy arguments that currently dominate antitrust. 
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I. Introduction 
 

This paper introduces modifications to topic modeling devised by the Digital 
Scholarship Center (“DSC”) at the University of Cincinnati. Topic modeling, a form 
of natural language processing that depicts the probability distribution of terms 
over a corpus of texts,1 has been heralded for its ability to process big data.2 The tool 
depicts how words cluster around one another, thereby illuminating the textual 
foundations of legal doctrine. Frequently utilized in computational legal analysis 
(“CLA”),3 topic modeling has helped to unearth patterns in judicial opinions,4 loan 
agreements,5 and national constitutions.6 

 
For the past several years, DSC has been building a machine learning (“ML”) 

platform that analyzes large datasets through variations on topic modeling.7 In one 
variation, we aggregate—or embed—six levels of topic modeling into a single set of 
visualizations. Using aggregated modeling, the platform reveals linguistic patterns 
within a corpus of cases extracted from Harvard Law School’s Caselaw Access 
Project (“CAP”), which has recently digitized almost all published decisions in the 
United States.8 The ensuing visualizations translate topic modeling into intuitive 
models for users with little statistical or empirical training. 

 
As a test, we have compiled a large pool of federal antitrust cases to see what 

our algorithms reveal of two thorny doctrinal questions: the measure of market 
power and the balance between antitrust and regulation. Our visualizations depict 
how thousands of market-power and antitrust–regulation cases cluster around 
different terms—as well as how these clusters have evolved over time. The legal 
doctrines around market power and the antitrust–regulation balance serve as a 
back-end check on the precision of aggregated modeling. 

 
Aggregating topic models achieves greater contextualization by helping to 

generate visualizations that embed topics into neural networks of topic clusters. As 

 
1 See David M. Blei, Andrew Y. Ng, & Michael I. Jordan, Latent Dirichlet Allocation, 3 J. MACH. LEARNING 
RSCH. 993 (2003); Michael A. Livermore, Allen B. Riddell, & Daniel N. Rockmore, The Supreme Court and 
the Judicial Genre, 59 ARIZ. L. REV. 837, 841–42 (2017). 
2 See David S. Law, Constitutional Archetypes, 95 TEX. L. REV. 153 (2016); Peter Grajzl & Peter Murrell, A 
Machine-Learning History of English Caselaw and Legal Ideas Prior to the Industrial Revolution I: Generating 
and Interpreting the Estimates, 17 J. INST. ECON. 1 (2021); Peter Grajzl & Peter Murrell, A Machine-Learning 
History of English Caselaw and Legal Ideas Prior to the Industrial Revolution II: Applications, 17 J. INST. ECON. 
201 (forthcoming 2021). 
3 See Michael A. Livermore & Daniel N. Rockmore, Introduction: From Analogue to Digital Legal Scholarship, 
in LAW AS DATA: COMPUTATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS xvii (Michael A. Livermore & 
Daniel N. Rockmore eds., 2019). 
4 Livermore et al., supra note 1, at 841–42. 
5 Bernhard Ganglmair & Malcolm Wardlaw, Complexity, Standardization, and the Design of Loan 
Agreements (Apr.	13, 2017) (unpublished manuscript) (available at 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2952567). 
6 See Law, supra note 2. 
7 Our team has partnered with scholars from various fields on research questions such as the 
understanding of race during Shakespeare’s era, the causes of placement disruption in foster care, links 
between race and carbon dioxide emissions in U.S. urban areas, pottery recovered in an early twentieth-
century expedition to the city of Troy, and the extent of geographical publication bias in biology 
publications. For a full list, see Projects, UNIV. OF CIN. DIG. SCHOLARSHIP CTR., 
https://sites.libraries.uc.edu/dsc/research/projects (last accessed Apr.	27, 2021). 
8 See About, CASELAW ACCESS PROJECT, https://case.law/about/ (last accessed July	7, 2020). 
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119 Doctrinal Implications of Computational Antitrust 

the next sections reveal, clusters depict the relationship among topics, just as topics 
show the relationships among terms.  

 
This is an opportune time to fuse CLA and antitrust into computational antitrust. 

Antitrust law has become immensely technical, so judges sometimes default to 
ideologies on judicial intervention and false positives to steer their decisions.9 Now, 
legislative changes are afoot in the U.S.—or, at least, rumblings about legislative 
changes, driven by ire over big tech.10 Yet despite bipartisan momentum, an 
overhaul of antitrust by legislation is uncertain, given political gridlock. 
Nonetheless, federal and state agencies are barreling ahead: In 2020, the DOJ, FTC, 
and state attorneys general sued Google and Facebook for a variety of 
anticompetitive practices, leaving the U.S. District Court for the District of 
Columbia to rule on the violations and craft remedies, a bedeviling proposition.11 
As in prior generations,12 federal courts—with their broad injunctive powers—are 
once again becoming the forum for pushing against entrenched paradigms. 

 
In this landscape, many scholars have advocated for reforming antitrust 

doctrine rather than overhauling it. Some call for simplifying antitrust law, for 
instance by restating its core goals.13 If antitrust prohibits anticompetitive conduct 
that increases market power,14 courts need only engage in two inquiries: whether a 
defendant is engaging in anticompetitive conduct and whether such conduct is 
likely to increase market power. Other scholars and advocates have singled out 
specific tenets, such as predatory pricing, duty to deal, and burdens of proof for 
reform. This camp would shore up essential facilities obligations, clarify antitrust 
immunity, relax or reverse plaintiffs’ burdens of proof, and recalibrate the 
deference to direct versus circumstantial proof of anticompetitive effects.15 The 
starting point for these proposals, though, is robust empirical analysis on where 
such doctrines currently stand. We aim to help build that foundation, by designing 
tools that assess how federal courts approach intractable doctrinal questions. 

 
 
 
 

 
9 See, e.g., Verizon Commc’ns Inc.	v. Law Offs. of Curtis V. Trinko, 540 U.S. 398, 414 (2004) (“Mistaken 
inferences and the resulting false condemnations are especially costly	.	.	.	. The cost of false positives 
counsels against an undue expansion of §	2 liability.”) (internal quotations omitted) (quoting Matsushita 
Elec. Indus. Co.	v. Zenith Radio Corp., 475 U.S. 574, 594 (1986)). 
10 See SUBCOMMITTEE ON ANTITRUST, H.R. COM. & ADMIN. L. OF THE COMM. ON THE JUDICIARY, 116TH 
CONG., INVESTIGATION OF COMPETITION IN DIGITAL MARKETS: MAJORITY STAFF REPORT AND 
RECOMMENDATIONS 133 (2020). 
11 See FTC	v. Facebook, Inc., No.	1:20-cv-03590 (D.D.C. filed Dec.	9, 2020); New York v. Facebook, Inc., 
No.	1:20-cv-03589 (D.D.C. filed Dec.	9, 2020); United States	v. Google LLC, No. 1:20-cv-03010 (D.D.C. filed 
Oct.	20, 2020). 
12 See, e.g., U.S. Dept. of Justice, Modification of Final Judgment §	II(A), reprinted in United States	v. 
AT&T, 552 F. Supp. 131, 227 (D.D.C. 1982). 
13 In a series of articles, Doug Melamed has championed the simplicity in antitrust. See A. Douglas 
Melamed, Antitrust Law and Its Critics, 83 ANTITRUST L.J. 269 (2020); A. Douglas Melamed, Antitrust Law 
Is Not That Complicated, 130 HARV. L. REV. F. 163 (2017). 
14 See Michael L. Katz & A. Douglas Melamed, Competition Law as Common Law: American Express and 
the Evolution of Antitrust, 168 U. PA. L. REV. 2061, 2071–72 (2020). 
15 See, e.g., LUIGI ZINGALES, GUY ROLNIK, & FILIPPO MARIA LANCIERI, STIGLER COMMITTEE ON DIGITAL 
PLATFORMS: FINAL REPORT (2019), https://www.chicagobooth.edu/-/media/research/stigler/pdfs/digital-
platforms---committee-report---stigler-center.pdf.  
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II. AGGREGATING TOPIC MODELS 
 

Topic modeling has already gained traction within CLA, so it is not unfamiliar 
to law scholars. Yet the technique has certain vulnerabilities, as digital humanists 
and computer scientists have previously pointed out. This Part summarizes the 
criticisms of topic modeling, as a preview to our improvements to traditional topic 
modeling algorithms.  
 
A – Criticisms from Digital Humanities and Computer Science 

 
Topic modeling illuminates patterns that cannot be seen by the human eye, at 

least not with traditional close readings of text. It is a form of distant reading, which 
considers texts “from afar, using statistics to support large-scale claims.”16 Distant 
reading can spur interesting collaborations on legal research, particularly in 
formulating the type of systematic review that can vet the claims of doctrinal work.17 

 
Digital humanities (“DH”) and computer science have lived with topic modeling 

far longer than law; there, criticisms of the tool are well-developed. Detractors of 
the computational approach to reading charge that it is “prone to fallacious 
overclaims or misinterpretations of statistical results because it often places itself 
in a position of making claims based purely on word frequencies without regard to 
position, syntax, context, and semantics.”18 More pointedly, the excitement around 
topic modeling merely stems from the fact that it seems to work better than other 
“rearrangement algorithms”; without the proper supervision, the tool resembles a 
“bad research assistant” that produces inexplicable and misleading results as much 
as “flickers of deeper truths.”19 

 
Context is therefore central to the viability of topic modeling. Robust 

visualizations must be able to show the texts from which the words are drawn—or, 
with legal texts, the cases that are statistically most likely to feature the terms that 
constitute a topic. Relatedly, it is possible to focus too much on a few discrete topics 
and lose the forest for the trees, so topics must be surveyed as a whole rather than 
in isolation.20 The opposite is also true: Topic modeling can overwhelm users as 
much by the grandness of its topics (i.e., too many topics) as by the exquisiteness of 
its detail (i.e., too many terms within a topic). For this reason, a topic modeling 
interface must simultaneously be able to break topics down to their constituent 
words and aggregate them into networks. We respond to these critiques by building 
visualizations that can do both, as presented in the next Subpart. 

 
16 Michael A. Livermore & Daniel N. Rockmore, Distant Reading and the Law, in LAW AS DATA: 
COMPUTATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS, supra note 3, at 3, 4. See also Lauren F. Klein, 
Distant Reading after Moretti, LAUREN F. KLEIN (Jan.	10, 2018), https://lklein.com/digital-
humanities/distant-reading-after-moretti/. 
17 See Livermore & Rockmore, supra note 16, at 16; William Baude, Adam S. Chilton, & Anup Malani, 
Making Doctrinal Work More Rigorous: Lessons from Systematic Reviews, 84 U. CHI. L. REV. 37 (2017). 
18 Nan Z. Da, The Computational Case against Computational Literary Studies, 45 CRITICAL INQUIRY 601, 611 
(2019). 
19 Benjamin M. Schmidt, Words Alone: Dismantling Topic Models in the Humanities, 2 J. DIGIT. HUMANS., 
Winter 2012, at 49, 50. 
20 See Andrew Goldstone & Ted Underwood, What Can Topic Models of PMLA Teach Us about the History 
of Literary Scholarship?, 2 J. DIGIT. HUMANS., 39 (2012). 
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121 Doctrinal Implications of Computational Antitrust 

 
Beyond decontextualization, DH and computer-science scholars have 

identified other deficiencies of topic modeling. For instance, some have argued that 
the computer scientists who created topic modeling intended it to perform 
functions quite different than what DH scholars have made it do.21 David Blei, one 
of the pioneers of latent Dirichlet allocation (“LDA”), had envisioned topic 
modeling as an information retrieval algorithm.22 Precursors of LDA, including 
most prominently latent semantic analysis from the 1990s, were designed for 
information retrieval and indexing as well.23 However enticing it may be to harness 
topic modeling and other CLA techniques for prediction of, say, litigation 
outcomes, these tools might be better restricted to discrete retrieval, indexing, and 
archival functions in law, at least until legal scholars have a better grasp of their 
capabilities.24  

 
Even if topic modeling is not used to forecast outcomes, it can fail simple 

robustness and reproducibility checks. Scholars have shown that if a corpus of text 
is changed slightly (e.g., 1% of the original sample removed), the ensuing topics are 
entirely different.25 Similarly, the modeling sampled in prominent DH papers have 
not always withstood reproduction by others.26 These methodological concerns 
question whether topic modeling is stable and verifiable. 

 
B – Aggregated Modeling 
 

We take seriously the criticisms levied at topic modeling from DH and 
computer science. Accordingly, we prefer to aggregate multiple LDA topic models 
in one iteration. In this way, we create a “model-of-models” that addresses some of 
the contextualization, robustness, and reproducibility concerns surrounding the 
tool. Several improvements to traditional topic models flow from their aggregation. 
First, our visualizations place topics in both large and small contexts. 

 

 
21 Schmidt, supra note 19. 
22 Id. 
23 See Scott Deerwester et al., Indexing by Latent Semantic Analysis, 41 J. AM. SOC’Y FOR INFO. SCI. 391 (1990). 
24 To some extent, this inclination is understandable. The predictive possibilities of text analytics draw 
grant funding and industry–university partnerships. For an interesting account at Georgia State 
University, see Charlotte S. Alexander, Using Text Analytics to Predict Litigation Outcomes, in LAW AS 
DATA: COMPUTATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS, supra note 3, at 275. 
25 Da, supra note 18, at 628. 
26 Id. at 628–29. 
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Figure 1: Network View of Market Power Cases in Model of Models 

 
Figure 1 shows a network of antitrust market power cases distributed as topic 

clusters across space. A topic cluster is an aggregation of multiple topics, where 
each topic is a collection of terms that are statistically most likely to appear 
together. The right-hand panel lists each cluster as a distinct shade of color; the 
clusters are also numbered. In addition, each cluster displays the number of topics 
that comprise the cluster as well as the top words in the topics. The central graphic 
depicts the relationship among the clusters. The left-hand panel lists the top 
“documents,” or cases, within a topic as well as the relevant metadata (e.g., case 
name). It also enables the retrieval of cases. 
 

 
Figure 2: Close-Up View of Antitrust–Regulation Cases with Document Retrieval 
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123 Doctrinal Implications of Computational Antitrust 

Figure 2 demonstrates the case retrieval function on a corpus of antitrust–
regulation cases: The highlighted topic cluster in the center encompasses topics 
with the terms “commiss[ion],” “rate,” “carrier,” “power,” and “act,” while the 
document retrieval feature enables the user to pull up specific cases. Here we have 

chosen to highlight American Trucking Associations, Inc.	v. I.C.C., the top case in the 
cluster.27 Note the “top” case means that case that is cross-listed in the most topics. 

 
Our aggregated modeling presents two levels of information: cluster networks 

show the connections among the topics, while the document retrieval interface 
shows the specific cases that contribute to each topic. In this way, topics are 
contextualized at both the macro- and the microscopic levels. The two scales of 
analysis allow us to see the full complexity of the corpus as a spatial arrangement 
of how terms are scattered across the cases that comprise the network. 

 
The visualizations employ vector space modeling, with topic clusters strewn 

across space. 
 
To bolster model stability, a feature that traditional topic modeling sometimes 

lacks,28 our algorithms run topic models at least twenty times for each query. As 
with any empirical project based on copious amounts of data, topic modeling is 
subject to margins of error, or “wobble.”29 As the next Part details, we run variations 
of more traditional topic modeling as comparators for each query. In comparison, 
model aggregation reduces the wobble significantly because the process only picks 
up the most stable and persistent topics across multiple iterations. 

 
The frequency of iterations also helps to present topics more coherently. 

Insignificant topic clusters are removed on multiple runs, so the aggregation 
ensures that visualizations present larger networks that have picked up truly 
significant term repetitions, rather than statistically aberrant patterns. 

 
III. METHODOLOGY 

 
This Part details how we are using recent technical advances to overcome the 

hurdles to data extraction and data interpretation. It also reveals how we are 
checking for model coherence and stability. This Part begins by explaining our data 
and access procedures, before concluding with our modeling and verification 
processes. 
 
A – Criticisms      

 
In October 2018, Harvard Law School unveiled its Caselaw Access Project 

(CAP), which digitized all physically published U.S. case law between 1658 and 2018, 

 
27 Am. Trucking Ass’n, Inc. v. I.C.C., 656 F.2d 1115 (5th Cir. 1981). 
28 See, e.g., Da, supra note 18, at 625. 
29 Margaret E. Roberts et al., Navigating the Local Modes of big Data: the Case of Topic Models, in 
COMPUTATIONAL SOCIAL SCIENCE: DISCOVERY AND PREDICTION (R. Michael Alvarez ed. 2016); Antske 
Fokkens et al., Offspring from Reproduction Problems: What Replication Failure Teaches Us, PROCEEDINGS OF 
THE 51ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (2013). 



 
 
 
 
 
 

                                   Stanford Computational Antitrust                                              VOL. 1 
      

 
 

124 

some 40 million pages.30 One of the projects great advantages is that its APIs feature 
tools that permit searching through all text in selected cases (as opposed to searches 
using tags or other metadata). We have created two pools of cases out of the CAP 
dataset: 36,000 federal cases bearing the word “antitrust” and 305,000 federal cases 
bearing the word “regulation.” We whittled the first pool down to 2,591 cases with 
the term “market power” (the “Market Power Corpus”) and the second pool down 
to 7,308 with the term “antitrust” (the “Antitrust–Regulation Corpus”). These corpora 
serve as the bases for our Market Power Corpus of 2,591 cases from the “antitrust” 
pool and our Antitrust–Regulation Corpus of 7,308 cases from the “regulation” 
pool.            

 
At first glance, these numbers seemed small to us, particularly the count of 

36,000 for all federal antitrust cases. The low numbers are partially explained by 
the fact that the data only goes through 2018 and does not include unpublished 
decisions.      

 
We verified the case counts in the Market Power Corpus and the Antitrust–

Regulation Corpus in several ways. A Westlaw search and subsequent filter for 
reported federal cases with the terms “antitrust and ‘market power’” returned 2,732 
cases; for reported federal cases with the terms “antitrust and regulation,” this 
number was 9,775. We also utilized CAP’s historical trends interface for verification. 
CAP has a little over 1.7 million unique federal cases in its corpus, and a search in 
historical trends reveals that antitrust cases have comprised a low of about 0.1% to 
a high of almost 4% of all federal cases, with a median roughly short of 2% (or about 
34,000 cases).31 Overall, we have more than a robust sampling for federal antitrust 
cases. 
 

B – Modeling and Validation 
 

To prepare the corpora, we used the Porter Stemming algorithm to remove 
suffixes and truncate words down to their roots.32 The text and metadata of the 
corpora were then indexed through Elasticsearch, a full-text search and analytics 
engine.33 

 
Utilizing Elasticsearch and the python Gensim package,34 DSC built a web-

based platform that sifts through cases by applying the unsupervised ML algorithm 
LDA. LDA models are generated on the basis of the distribution of latent topics in 
a document and the distribution of words in those topics.35 Each topic is constructed 

 
30 About, CASELAW ACCESS PROJECT, supra note 8. 
31 A simple search using CAP’s historical trends function reveals that antitrust cases rose to a high of 4% 
of all federal cases in the 1980s. See Historical Trends, CASELAW ACCESS PROJECT, https://case.law/trends/ 
(search for “us: antitrust”). We also verified CAP’s count of federal antitrust cases, which was roughly 
32,000. 
32 See Martin Porter, The Porter Stemming Algorithm, TARTARUS.ORG (2006), 
https://tartarus.org/martin/PorterStemmer/ (last accessed June 8, 2021). 
33 Elasticsearch: The Heart of the Free and Open Elastic Stack, ELASTIC, 
https://www.elastic.co/products/elasticsearch (last accessed Sept. 14, 2019). 
34 Gensim 3.8.1, PYTHON PACKAGE INDEX, https://pypi.org/project/gensim/ (Sept. 26, 2019 data release) (last 
accessed Oct. 20, 2019). 
35 Blei et al., supra note 1. 
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125 Doctrinal Implications of Computational Antitrust 

based on a probability distribution of words.36 For instance, one topic might feature 
the term “market” with high probability, whereas its association with another topic 
will not be as strong. On the platform, users can enter keywords and then retrieve 
the relevant documents bearing those words (each “document” being an individual 
decision from our dataset). 

 
Researchers typically employ unsupervised ML techniques to generate insights 

on reams of unstructured datasets. Compared to supervised ML, however, these 
techniques can be a bit of a black box: difficult to scrutinize and verify. Accordingly, 
we combine both qualitative and quantitative methods, bringing together technical 
expertise in ML and subject matter expertise in antitrust, to ensure not only the 
replicability of the models but also confidence in their results. This has been DSC’s 
approach in its other collaborations.37  

 
For transparency and reproducibility, we have made available the underlying 

code.38 The models themselves should also be tested for coherence and stability. At 
the moment, DSC is working toward the capacity to calculate coherence scores on 
all models generated from its collaborations.39 This will allow us to gauge whether 
the alpha and beta hyperparameters (which determine the assumed concentrations 
of topics per document and words associated with a topic) are properly tuned to 
maximize the likelihood that top words in each topic are co-occurring in similar 
contexts.40 

 
As for stability, the platform runs six parallel models from different, random 

seeds on each corpus; the results are then incorporated in a single visualization.41 
The ensuing model-of-models aggregates topics into clusters, a macroscopic output 
that accentuates the overlaps in terms and topics that recur across the parallel runs 
while de-emphasizing the topics with rarer terms. This modification to topic 
modeling enhances the topics with overlapping vocabularies while improving 
model interpretability.  

 
Previously, LDA has been criticized for relying too heavily on term–topic 

probability distributions.42 In response, we incorporated document-level 
information as well in the construction of our model-of-models. Combining the 

 
36 For a more detailed explanation, see Jason Chuang et al., Interpretation and Trust: Designing Model-
Driven Visualizations for Text Analysis, CHI ‘12: PROCEEDINGS OF THE SIGCHI CONFERENCE ON HUMAN 
FACTORS IN COMPUTING SYSTEMS (2012). 
37 For both an example of another collaboration, as well as a more detailed discussion of DSC’s 
methodology, see Margaret V. Powers-Fletcher et al., Convergence in Viral Outbreak Research: Using 
Natural Language Processing to Define Network Bridges in the Bench-Bedside-Population Paradigm, 3.1 HARV.  
DATA SCI. REV. (2021), https://hdsr.mitpress.mit.edu/pub/xhht1a9s/release/2. 
38 See Ezra Edgerton, Covid Network Bridges Paper Code, 
https://github.com/ucdscenter/Covid_Network_Bridges_code (last accessed June 9, 2021). Note that the 
modeling source code is the same for our project, even though this page is titled under the name of a 
different collaboration. 
39 For one example where this has been done, see id. 
40 See Shaheen Syed & Marco Spruit, Full-Text or Abstract? Examining Topic Coherence Scores Using Latent 
Dirichlet Allocation, 2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED 
ANALYTICS (DSAA) (2017). 
41 Aggregation is an alternative to running only one model, which is more dependent on the initial 
Bayesian distribution. 
42 See David M. Blei, Probabilistic Topic Models, 55 COMMUN. ASSOC. FOR COMPUT. MACH. 77 (2012). 
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term–topic and document–topic matrices allows us to better assess the models’ 
depiction of inter-topic relationships, by illustrating not only the words but also the 
cases shared by each topic. 

 
Finally, as a back-end check on our models, we are reading the top cases within 

all topics. Document-level review allows the domain experts among us to gauge 
how dependable the unsupervised ML results are—and how closely the results 
hew to antitrust doctrine. 

 

IV. TOPIC MODELING VISUALIZATIONS 
 

Our platform’s models provide visualizations of cases grouped by recurring 
terms, depicting both the relationships among terms and the relationships among 
groups of cases. We can create three types of visualizations, all built around topic 
modeling. The first set of visualizations are generated by our aggregated modeling 
algorithms. These create “multilevel” or model-of-models visualizations that 
provide a hierarchical view of topics and topic clusters in three different formats—
tree, circle, and network (see Figures 3–6). 

 

 
Figure 3: Multilevel Visualization of Market Power Cases in Tree Format 

 
In the tree format of Figure 3, the smaller nodes on the right represent topics 

(e.g., machine-grouped terms “price,” “retail,” “competit[ion],” “market,” and 
“wholesal[e]”), while the larger nodes represent clusters of topics (e.g., a cluster with 
“price,” “market,” “evid[ence],” “competit[ion],” and “product”). The size of each 
cluster node or topic node represents the significance of the cluster or topic to the 
overall corpus. The right-hand bar shows the number of topics within each cluster 
(thereby functioning as a proxy for the cluster’s diversity), and the left-hand bar 
lists the top cases in each topic. 
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Circle view presents the same information, but in a format that more clearly 

conveys the topics where each word appears. Clicking on a specific word pulls up 

how it is shared across topic clusters. For example, Figure 4 (below) shows the 

recurrence of the term “market” within all topics. In contrast, network view 

constructs a spatial representation where each topic comprises a vector in space 

(see Figure 1 above). It is adapted from the neural network architecture Word2Vec, 

where each word represents a vector.43 

 

 

Figure 4: Multilevel Visualization Showing the Recurrence of the Term “Market” 
 

The second set of visualizations, “topic browser,” are generated from the DFR 

framework of Andrew Goldstone, a DH scholar.44 Topic browser visualizations 

organize cases into topics, enabling detailed analyses of where (i.e., in what topics) 

certain terms recur (see Figures 5 and 6). 

 

 
43 Thomas Mikolov, Distributed Representations of Words and Phrases and their Compositionality, 26 
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (C.J.C. Burges et al. eds., 2013); Elliott Ash & 
Daniel L. Chen, Case Vectors: Spatial Representations of the Law Using Document Embeddings, in LAW AS 
DATA: COMPUTATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS, supra note 3, at 315–7. 
44 See Andrew Goldstone, DfR-Browser: Take a MALLET to Disciplinary History, 
https://agoldst.github.io/dfr-browser/ (last accessed Feb. 27, 2020). 
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Figure 5: Topic Browser Visualization of Market Power Cases in List Format 
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Figure 6: Breakdown of Terms and Cases within a Topic in Topic Browser View 

 
From the overview in Figure 5, the user can browse a specific topic by clicking 

on it, which brings up the topic’s top terms and cases as shown in Figure 6.  
 
Both the overview and single-topic view display histograms on the time periods 

when certain topics were more prevalent. Clicking on each term pulls up the topics 
where the term appears. 

 
The third set of visualizations, python-based LDA visualizations (“pyLDAvis”), 

is built from the framework of the programmer Ben Mabey.45 PyLDAvis depicts the 
distance between topics, in a format that most closely resembles the Word2Vec 

 
45 See Ben Mabey, Welcome to PyLDAvis’s Documentation!, 
https://pyldavis.readthedocs.io/en/latest/index.html (last accessed Feb. 27, 2020). 
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architecture (see Figure 7). Word2Vec is a two-layer neural network devised by 
Google that assigns each term onto a vector in space. The totality of such a graph 
represents the entire corpus and can have hundreds of vectors, each corresponding 
to a term, thereby illustrating the proximity and distance among terms.46 In the 
pyLDAvis adaptation, the size of each topic bubble represents the weight of that 
topic. When a topic is highlighted, the platform pulls up the top probable words 
contained in that topic.47  

 

 
Figure 7: pyLDAvis View of Antitrust Cases Containing “Trinko” 
 

Figure 7 shows how our algorithms have sorted antitrust cases with the word 
“Trinko” into four topics.48 In the screen shot, topic 4 is highlighted, bringing up its 
top terms. With pyLDAvis and the other visualizations, the platform user can set 
the number of topics manually. Here, the model is comprised of five topic bubbles. 

 
In totality, these three sets of visualizations—multilevel, topic browser, and 

pyLDAvis—allow for easier interpretation of machine analysis. They add a 
translational step between topic models and the user by generating visual 
depictions that are intuitive and easy to grasp without necessarily requiring 
statistical training. The features we have embedded into the platform also allow 
users to situate terms and topics in multiple contexts, such as historical (through 
histograms), constituent cases, constituent terms, meta-topics, and distances 
among topics and meta-topics. 

 
46 See Mikolov, supra note 43. For an illustration of Word2Vec, see Jay Alammar, The Illustrated Word2Vec  
(Mar. 29, 2019), https://jalammar.github.io/illustrated-word2vec/. 
47 For a mathematical expression of probability, one of the key concepts in this statistical analysis, see 
Carson Sievert & Kenneth E. Shirley, LDA vis: A Method for Visualizing and Interpreting Topics, 2014 
PROCEEDINGS OF THE WORKSHOP ON INTERACTIVE LANGUAGE LEARNING, VISUALIZATION, AND 
INTERFACES 63, 66 (Jason Chuang et al. eds. 2014). The probability of any term within a topic is its 
relevance within that topic. Relevance can be expressed as r(w,k) | = λ log(φkw) + (1 – λ) log (φkw / pw), where 
λ is the weight of the probability of term w under topic k relative to its lift. 
48 See Verizon Commc’ns Inc.	v. Law Offs. of Curtis V. Trinko, 540 U.S. 398, (2004). Trinko reset the 
balance between antitrust and regulation while also gutting the essential facilities doctrine. 
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Two additional points are notable. First, generic words such as “court,” “see,” 
“claim,” and “plaintiff” are prevalent in the initial results. Although their presence 
renders the topics more generic, their appearance corroborates the fact that our ML 
is identifying the top terms. Judicial decisions are replete with these wordsthat 
algorithms are not trained to filter out.49 We can refine the results by excluding 
generic words from the visualizations.50 Second, these three types of visualizations 
are different than Word2Vec, which has been the visualization of choice on many 
legal research projects so far. From a methodological perspective, our project 
therefore pushes ML in legal scholarship beyond word-level analysis, by building 
topic and even meta-topic models. 

 
V. CONCLUSION 

 
Topic modeling algorithms can be modified to address the criticisms of its 

detractors by providing greater context at the micro- and macroscopic levels. We 
have found that aggregating topic modeling over many iterations helps to eliminate 
aberrant results while providing contextualization.  

 
Our visualizations show how antitrust caselaw fall into different categories. In 

the Market Power corpus, clusters span telecommunications, mergers, patent, 
technology, sports, tying, health care, class action, and civil litigation topics and 
terms, among others.51 Meanwhile, the Antitrust–Regulation corpus splinters into 
Interstate Commerce Commission (“ICC”), immunity, insurance, health care, 
telecommunications, labor, energy, banking, securities, tax, class action, and civil 
litigation topics and terms, among others. These results implicate additional trends, 
such as the decline of ICC cases and a rise of civil litigation topics over time. For 
researchers delving into a particular doctrine for the first time, the pairing of topic 
modeling with traditional research tools is particularly exciting because of its 
ability to show connections across doctrines. 

 
At the same time, however, topic modeling calls into question the search 

algorithms of commercial databases such as Westlaw and Lexis. Frequently, the top 
documents for topics and topic clusters are not the top cases that are returned on a 
Westlaw or Lexis search.52 We hope these disparities push the operators of these 
databases to be more transparent in how they define relevance.  

 
There is still much to be done with our platform and visualizations. Looking 

ahead, we plan to enhance our model validation capabilities by calculating 
coherence scores and extracting random samplings of documents within our 
corpora to see whether the topics reflect the same clustering as in the corpora 
overall. We undertake these validations with the hope of illuminating the black box 
of our unsupervised ML tools. 

 
49 Our platform has the capacity to exclude these generic terms in the construction of visualizations. 
50 Excluded words are tagged as “stop words.” At this point, the platform can only filter out up to nine stop words. 
51 The results are detailed in Felix B. Chang et al., Modeling the Caselaw Access Project: Lessons for Market 
Power and the Antitrust–Regulation Balance, 22 NEV. L. J. __ (forthcoming 2022). 
52 For instance, in the Antitrust–Regulation corpus, in clusters where “immunity” is a top term, the top 
results are neither Gordon v. New York Stock Exchange, Inc., 422 U.S. 659 (1975), nor Parker v. Brown, 317 U.S. 
341 (1943). By contrast, these two cases, which cover the conflicts between antitrust and regulation as well 
as antitrust immunity for state action, are among the top results in Westlaw (using “antitrust and 
regulation” and a filter for “immunity”). 
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