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Contact tracing is a pillar of COVID-19 response, but language
access and equity have posed major obstacles. COVID-19 has dis-
proportionately affected minority communities with many non–
English-speaking members. Language discordance can increase
processing times and hamper the trust building necessary for
effective contact tracing. We demonstrate how matching pre-
dicted patient language with contact tracer language can enhance
contact tracing. First, we show how to use machine learning to
combine information from sparse laboratory reports with richer
census data to predict the language of an incoming case. Second,
we embed this method in the highly demanding environment of
actual contact tracing with high volumes of cases in Santa Clara
County, CA. Third, we evaluate this language-matching interven-
tion in a randomized controlled trial. We show that this low-touch
intervention results in 1) significant time savings, shortening the
time from opening of cases to completion of the initial interview
by nearly 14 h and increasing same-day completion by 12%, and 2)
improved engagement, reducing the refusal to interview by 4%.
These findings have important implications for reducing social dis-
parities in COVID-19; improving equity in healthcare access; and,
more broadly, leveling language differences in public services.

language access | contact tracing | COVID-19 | health equity | machine
learning

Contact tracing—the process of calling diagnosed cases, iden-
tifying and notifying their contacts, and assisting with isola-

tion and quarantine—is a pillar of infectious disease response.
Throughout the COVID-19 pandemic, many jurisdictions have
rapidly scaled up contact-tracing efforts to contain the spread of
the disease. Given the disproportionate impact COVID-19 has
had on immigrant and minority communities, it is vital to ensure
that contact tracing works effectively and equitably across differ-
ent segments of the population. Language and cultural barriers
may contribute to disease disparities if the same quality of care
and contact tracing cannot be delivered to vulnerable commu-
nities. In this paper, we illustrate how machine learning can be
used to level these language differences through a randomized
controlled trial conducted with the County of Santa Clara Public
Health Department’s Case Investigation and Contact Tracing
(CICT) Team.

COVID-19 has highlighted the structural, language, and cul-
tural barriers Latinx communities face when trying to comply
with policies such as shelter-in-place orders. The disparity in
impact is stark—38.9% of California’s population is Latinx, yet
Latinx individuals make up 55.6% of COVID-19 cases and 46.6%
of COVID-19 deaths (1, 2). A variety of factors are thought to
have contributed to this acute disparity, from Latinx individuals
being more likely to be employed in essential industries and
therefore facing greater occupational exposure to COVID-19 (3–
5) to the lower likelihood of having health insurance, making
it difficult to access necessary testing and treatment resources
(6). Combined with higher-density living conditions, mistrust
of public health authorities, and insufficient information and
resources in their preferred language, these factors put the Latinx
community at heightened risk of poor health outcomes and
COVID-19 (3–5, 7, 8). The outsized risk these communities face

makes it all the more critical that contact tracers are able to
reach these communities, interrupt new chains of infections, and
provide supportive resources during isolation and quarantine.

Trust and rapport are critical for effective contact tracing
(4, 9–11), as interviews must cover sensitive and private topics
to identify contacts. These calls are also important for informing
policymaking and case investigation, as the initial case reports
from laboratories are sparse in information. However, patients
in minority communities may be especially fearful of phone calls
from the government, unwilling to share personal information
about themselves or their networks (11), or worried that dis-
closing their information could affect their employment or im-
migration status (4). Contact tracers with local language fluency
and cultural competency can build greater trust among minority
groups and immigrant communities, engage with patients in
their preferred language, and dispel myths and misinformation
(9). These language differences can be addressed by providing
contact-tracing interviews in a patient’s preferred language.

Santa Clara County, CA, home to the city of San Jose, is a
county with 1.9 million residents. It was the first US jurisdiction to
issue a shelter-in-place order, in coordination with five other Bay
Area counties. Santa Clara County has invested significant efforts
in contact tracing, including, at its peak, over 900 contact tracers.
In August 2020, ∼60 of these were bilingual Spanish-speaking
contact tracers. Cases with language needs far outstripped the
bilingual capacity of the CICT team (10). Due to the enormous
time pressure to reach cases and sparsity of language information
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in laboratory reports, the assignment of cases to contact tracers
did not account for patients’ language needs at baseline. Hence,
the existing language skill set was dramatically underutilized.
Instead, all contact tracers had the option of using a telephonic
interpretation service provided by the state that connects callers
with “qualified” interpreters, i.e., bilingual interpreters who have
been tested and certified as proficient by a state agency or other
testing authority (12). After reaching a patient and ascertaining
interpretation needs, tracers would dial an interpreter into the
call to conduct the interview with simultaneous interpretation.
Numerous challenges surfaced in the process, including technical
issues (e.g., dropped calls, poor audio quality, delays), longer
holds and wait times for Spanish interpreters in particular, and
questions about the mismatch between general interpreters and
specific COVID-19 needs. These challenges disrupted the ef-
fectiveness of contact tracing with language minorities and the
Spanish-speaking population in particular, which was the impe-
tus for this particular project.

In this paper, we demonstrate how machine learning can lever-
age administrative data to create interpretable risk scores that an
individual primarily speaks Spanish. The inputs from laboratory
reports are age, name, and address. These inputs are merged with
census data that contain Spanish-speaking information at the
census block group (CBG) level, commercial data that contain
language information with demographic correlates, and name-
based race and ethnicity information from census and mortgage
data. We show that an interpretable heuristic model can rea-
sonably predict Spanish-speaking status, which was critical for
adopting this approach in practice. These scores can then be used
to identify patients who are in most need of a bilingual contact
tracer, allowing for more efficient allocation of the relatively low
supply of bilingual staff.

We evaluate the effects of utilizing this model in a randomized
controlled trial of language matching with Santa Clara County’s
actual contact-tracing process over a 2-mo period. During this
period, CICT integrated our risk-scoring algorithm into their
contact-tracing system and assigned patients with higher risk
scores of being Spanish speakers to a language specialty team
(LST) composed primarily of Spanish-speaking contact tracers.
We tracked outcomes in real time and conducted a survey of the
majority of CICT members on their experiences with language
discordance. Using data recorded in the contact-tracing system
and the survey responses, we assess the effects of language
matching on interview times, ability to build rapport, patient
satisfaction and trust, and effectiveness of interviews. Our work
demonstrates substantial improvement from bilingual contact
tracing compared to simultaneous telephonic interpretation.

Our contributions are threefold. First, we demonstrate how
machine learning can be used with administrative data to im-
prove health equity in contact tracing. Second, we evaluate the
impact of a language-matching intervention in a randomized
controlled trial and show that it enables improved and more
equitable care. Third, our work illustrates the benefits of bilingual
staff vs. interpretation services and the importance of quality of
language access in leveling disparities in social services.

Based on the results and success of this trial, Santa Clara
County has expanded language matching to all of CICT, and the
state of California is contemplating adoption in the statewide
system.

Predicting Language Need from Sparse Records
Features and Labels. We begin with laboratory reports of individ-
uals who have tested positive for COVID-19. Due to a highly
decentralized network of laboratories, the information that is
consistently sent to Santa Clara County for each case is sparse,
often comprising only the name of the patient, birth date, and
residential address. Our aim is to use these inputs to develop a
risk score of whether a patient is likely to prefer conducting the

interview in Spanish. For expositional simplicity, we refer to such
individuals as “Spanish speakers.”

We rely on US Census data to quantify the relationship be-
tween the likelihood of being a Spanish speaker and age, CBG,
and last name. We also use a comprehensive list of first names
derived from mortgage applications (13) to probabilistically infer
race and ethnicity (14).

In addition, we use another source of administrative data to
measure Spanish speaker status: voter registration data. Specif-
ically, we use individual voter records of voters in Santa Clara
County from L2, a private voter file vendor (15). These records
include individual demographic information, including our fea-
tures of interest, and language predictions from voter registration
forms and a proprietary algorithm. Using these labels to create
interpretable risk scores, we built an interpretable model that can
be applied to all incoming cases, including nonregistered voters.
For details, see Materials and Methods.

An Interpretable Model of Language Need. While we implemented
a fully machine-learned approach using random forests, inter-
pretability was a priority for Santa Clara County and important
for securing buy-in from Santa Clara County leadership and
key stakeholders. A parsimonious set of features cohered with
domain knowledge: For instance, Santa Clara County had previ-
ously attempted to assign cases from certain ZIP codes to teams
with more language skills. We hence developed a data-driven
heuristic approach using a small feature set that is transparent
and understandable and yields improved predictive performance
relative to the baseline.

The heuristic approach optimally bins covariates based on pre-
dictive association with the Spanish label. Combinations of these
bins are used to calculate risk scores (Materials and Methods).
Fig. 1 visualizes the distribution of Spanish speakers across the
four features. Within each panel, the x axis represents age from
youngest to oldest, and the y axis represents the address score
from lowest to highest. Across panels, Fig. 1 varies from lowest
to highest the first-name score along the x axis and the last-name
score along the y axis. Each dot represents the proportion of
Spanish speakers in color, scaled by the number of individuals
in that bin. We define this proportion as the risk score, i.e., the
likelihood that an individual is a Spanish speaker. The modal
patient, represented by the red dots in Fig. 1, Bottom Left, lives in
an area with very few Spanish speakers with names not indicative
of Latinx individuals. Fig. 1, Top Right indicates bins of individuals
with a high likelihood of being Spanish speakers (blue colors).
We define cutoffs based on operational capacity to select Spanish
speakers for potential assignment to the treatment group. These
are overlaid in dark gray shading in Fig. 1.

Performance and Calibration. We evaluate the performance of our
heuristic algorithm in the test set of the voter data. Fig. 2 shows
the receiver operating characteristic (ROC) and precision-recall
(PR) curves for our algorithm at every classification threshold.
With an area under the curve (AUC) of 0.94 for the ROC curve
and an AUC of 0.85 for the PR curve, our algorithm performs
well within the context it was trained on. At the threshold we
selected (0.82) for operational purposes, the precision on the
voter data test split is 88%.

Evaluation Research Design
Randomization. We assessed the impact of this intervention with
a randomized controlled trial. We define the treatment of in-
terest as whether a case is handled by the seven-member LST,
composed primarily of contact tracers fluent in Spanish. The
randomization scheme worked as follows: First, with each intake
batch of new cases, we predicted which cases were likely to be
Spanish speakers, based on whether the risk score exceeded a
predetermined threshold set by operational capacity. Second,
due to the limited capacity of the LST and the desire to allocate
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Fig. 1. Distribution of Spanish speakers across all age, address score, first-name score, and last-name score bins in the train split of the L2 dataset. Each
tile represents a bin that an individual may fall into based on the individual’s age, address score, first-name score, and last-name score. The size of the
point in the bin corresponds to the total count of individuals in that bin. The color of the point corresponds to the percentage of individuals in that bin
that are Spanish speakers. The gray shading represents the risk score cutoffs we use in our algorithm. Any individuals belonging to bins in the darker gray
shade are flagged as Spanish speakers. Individuals in bins in the lighter gray shade are not flagged. A description of how the cutoffs are determined is in
SI Appendix, Methods.

language skills where most needed, we randomized cases only in
excess of a capacity threshold. If the number of flagged cases was
below or equal to capacity at the time of data transfer, all of the
cases were assigned to the LST. If the number of flagged cases
was greater than capacity, we randomly assigned as many cases
as the LST could handle and reserved the remainder of cases as
the control group. Because case counts fluctuated dramatically
during the study period, our analysis below accounts for this form
of stratified randomization.

Operation. Operationally, we embedded language matching
within Santa Clara County’s existing case assignment process.
CICT had already built data pipelines that allowed for the

automated processing and routing of cases to different queues
for specialty teams. For example, cases at long-term care facilities
were identified and handled through a separate process. Cases
were transferred in batches, with typically three batches per
day, into the contact-tracing system. For our study, we added an
additional language-matching step to this pipeline that took in
unassigned cases, geocoded them to the CBG level, flagged cases
as being likely Spanish speakers, and randomized and routed
them to the LST in real time.

Analysis. We examine outcomes of the contact-tracing process,
including whether an interpreter was utilized, the timing of the
process, whether an interview was completed, and the volume of
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Fig. 2. Performance of the heuristic model visualized as receiver operating characteristic and precision-recall curves along with AUCs. These curves are
generated by evaluating the model at every classification threshold (depicted by the blue palette) on the test split from the L2 dataset. The high AUCs show
the model’s ability to perform well in the context it was trained on.
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information provided. If language matching had its intended ef-
fect, we should observe reductions in the reliance on interpreters,
faster case processing, and improvement in case information
collected (e.g., number of contacts provided).

The randomized design makes outcomes analysis relatively
straightforward. We examine “intention-to-treat” (ITT) effects
on outcomes of interest. The one complication is that the existing
case assignment process broke down with the sharp case surge
during the third wave of COVID-19 around December 2020.
High case counts led to long transfer times from the statewide
record system to Santa Clara County’s system, and Santa Clara
County responded by assigning cases out immediately. This de-
viation meant that there was substantial “noncompliance” with
the treatment assignment. We hence account for these deviations
by using an instrumental variables (IV) approach to recover
the “complier average causal effect (CACE),” namely the effect
among the subgroup of cases that were routed to the LST solely
because of the language-matching intervention. Since random-
ization occurred within each assignment batch, we account for
this “block randomized design” throughout our analysis (16). De-
tails on the approach and an alternate analysis using propensity
score matching to account for the deviations are in Materials and
Methods.

Survey. To supplement the quantitative results, we administered
a survey to all active contact tracers as of March 2021 (n =
645) about their experience with language discordance (see
SI Appendix, Fig. S5 for questions). We received a total of
411 responses (64% response rate), which are summarized in
SI Appendix, Fig. S6.

Results
Our data consist of a total of 3,258 cases distributed across 64
assignment batches between 3 December 2020 and 6 February
2021. The average batch size was approximately n = 51. Of
these 3,258 cases, 1,599 cases (49.08%) were routed to the LST.
Because of the case surge associated with the third wave in
December 2020, however, only 311 of these 1,599 cases (19.45%)
were handled by the LST. Among the 1,659 cases that were
assigned to the control group, 1,630 (98.25%) were handled by
non-LST CICT staff.

While there was a primary LST group, if there were more
cases assigned to the LST than they could handle (notwithstand-
ing our capacity threshold in the randomization step), the LST
team leads would occasionally assign those cases to non-Spanish
speakers on related teams. We omit cases assigned to these
“secondary” tracers from both the treatment and the control
groups to isolate the effect of the primary LST. This reduces
the sample of 3,258 cases down to 3,106 cases. (See Materials
and Methods for results including those team members in the
treatment group, with comparable results.)

Covariate Balance. We assess covariate balance to verify whether
randomization constructed comparable treatment and control
groups in Table 1. For individual-level covariates, we assess bal-
ance on the Spanish risk scores and gender data from the contact-
tracing system (CalCONNECT). We also merge an extensive set
of socioeconomic covariates based on geocoded CBG from the
2019 American Community Survey 5-y estimates. Because CBG
information based on address is required for language matching,
we examine 3,055 cases with complete CBG-level information.
We omit assignment batches with fewer than 2 cases in the
treatment or control group, which results in 3,025 cases. We
account for batch membership in assessing whether the estimated
imbalance for each covariate is statistically significant.

We assess balance between treatment and control groups “as
randomized.” Table 1 confirms that randomization worked as
expected. Treatment and control groups are comparable on most

Table 1. Balance on subset of covariates between cases randomly
assigned to the LST and cases not selected between 3 December
2020 and 6 February 2021

As randomized

Control Treatment P value

Individual-level variables
Spanish propensity score 0.86 0.86 0.26
Male 0.53 0.52 0.31

CBG-level variables
Social vulnerability index 74.55 75.44 0.41
Below poverty, % 7.42 7.54 0.76
Unemployed, % 3.51 3.49 0.41
Per capita income, $1,000 35.14 35.46 0.33
No high school diploma, % 24.93 24.66 0.55
Aged 65 y or older, % 11.35 11.32 0.39
Aged 17 y or younger, % 24.43 24.13 0.22
Civilian with a disability, % 11.09 11.05 0.97
Single-parent households, % 13.17 13.32 0.91
Minority, % 81.90 82.12 0.83

Sample size 1,601 1,424

Shown is the balance check on a subset of individual-level and CBG-level
variables to ensure that the treatment group (cases randomly assigned to
the LST) and control group (cases not assigned to the LST) are comparable.
The as randomized data contain units with nonmissing values for all balance
covariates of interest. There are no units with missing data for the individual-
level variables. There are 2 units with incomplete data for the CBG-level
variables, and these are omitted. The sample used for the balance check
consists of 64 batches.

dimensions. There are small imbalances on some CBG-level vari-
ables (e.g., residence in multiunit structures, vehicle possession),
but such imbalances can be reasonably expected due to chance
alone. See SI Appendix, Table S1 for the full set of covariates.

Outcomes. As before, we begin by subsetting our sample of 3,025
cases with observed CBGs. Outcomes are defined based on
fields present in CalCONNECT data for each case. We note
at the outset that there are no discernible differences in miss-
ingness of outcomes between the assigned and control groups
(SI Appendix, Table S3).

Table 2 presents causal effect estimates for the intention-to-
treat effect in the left column and the CACE in the right column.
We note two key results.

First, we find robust evidence from the IV analysis that the LST
resulted in significant time savings. The time from a case being
opened to the interview being completed is reduced by nearly 14
h, while the likelihood of the case interview being completed on
the same day it is opened increased by 12%. These time savings
are also consistent with the ITT analysis, which shows a 4%
increase in the likelihood of the case interview being completed
within 24 h of the time it is opened.

Second, we have moderate evidence that the LST reduces
refusals to interview by 4% from the IV analysis and 1%
from the ITT analysis, which is suggestive of improved patient
engagement.

The ITT results also show a slightly significant decrease in
usage of third-party interpreters of 3%. The IV analysis does
not show a statistically significant decrease in usage of third-
party interpreters, but the uncertainty interval is wide. We do not
find evidence that language matching affected other quantitative
measures of engagement, such as the number of contacts elicited
or an affirmative refusal to provide close contacts.

Survey Results
Survey responses corroborate the results above. First, while
most respondents found the interpretation service valuable,
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Table 2. Analyses on the effect of language matching on outcomes

Intention-to-treat effect Complier average causal effect

Outcome Control LST Effect SE P value Effect SE P value

Interpretation service used 0.23 0.21 −0.03∗ 0.02 0.07 −0.11 0.07 0.11
Interview completed 0.74 0.75 0.00 0.02 0.93 0.01 0.08 0.87
Refused to interview 0.02 0.01 −0.01∗ 0.00 0.05 −0.04∗∗ 0.02 <0.05
Refused to provide contacts 0.02 0.02 0.00 0.01 0.76 0.00 0.03 0.86
Time to interview completion, d 1.25 1.04 −0.14∗∗∗ 0.06 <0.01 −0.57∗∗ 0.27 0.04
Time case open, d 4.14 4.01 0.14 0.35 0.68 1.01 1.48 0.50
Interview completed within 24 h 0.65 0.68 0.04∗∗ 0.02 0.03 0.14 0.09 0.10
Interview completed on the same day 0.14 0.28 0.05∗∗∗ 0.01 <0.01 0.12∗∗ 0.06 0.03
Average number of contacts provided 0.19 0.20 0.03 0.04 0.44 0.08 0.15 0.60
At least one contact provided 0.08 0.08 0.00 0.01 0.74 0.00 0.04 0.94
Sample size 1601 1424

*P < 0.10, **P < 0.05, ***P < 0.01. Shown is the effect of the intervention on cases assigned to the LST and cases not assigned to the LST (control).
Batches with treatment or control groups smaller than two are dropped from the analyses. There were 62 batches in the ITT sample. For the ITT estimates,
the average treatment effect (ATE) and SEs are estimated as shown in ref. 15. The CACE was estimated with the iv_robust() command in the estimatr package.
First-stage results and diagnostic statistics are reported in Materials and Methods.

respondents also noted common difficulties (e.g., dropped
calls, lower rapport, and awkwardness with simultaneous
interpretation).

Second, most respondents indicated that interpretation in-
creased the time for contact tracing. Speed is critical for effective
contact tracing, as there is a need to reach patients as quickly as
possible after a diagnosis, and 45% of respondents indicated that
the time added was “considerabl[e]” or “a great deal.”

Third, two-thirds (67%) of bilingual respondents reported that
conducting the interview themselves was much easier (54%)
or somewhat easier (13%). Respondents also reported several
common benefits from being able to use their own non-English
language skills, including 1) increased client satisfaction; 2) im-
proved ability to control the interview, elicit relevant informa-
tion, and provide other assistance (e.g., referrals to supportive
services); 3) ability to build trust, comfort, and openness; and 4)
reduced interview times.

Discussion
Our study has provided robust evidence that machine learning
can improve the efficiency and effectiveness of pandemic re-
sponse by matching cases to contact tracers based on language.
While much concern has been articulated about how machine
learning can encode bias, this use case powerfully illustrates
how machine learning can be deployed to promote public health
equity.

We note several limitations of the study. First, while the re-
search design was rigorous, it was not possible to anticipate the
extreme strain that the third wave of COVID-19 imposed on
the contact-tracing process. This is what accounts for degrees
of noncompliance with the original protocol. Nonetheless, the
results strongly suggest material benefits to language matching.

Second, because some LST members were drawn from the
base of contact tracers, our estimates may somewhat inflate the
benefits of language matching. After all, the LST members, who
represent about 10% of all Spanish-speaking tracers, would have
been able to engage Spanish-speaking cases in the absence of the
intervention. However, the impetus for this trial was precisely the
observation that language skill sets were heavily underutilized, as
cases were not systematically matched in any way. In the control
group, roughly 12% of cases would have encountered a Spanish
speaker by chance alone, so our intervention demonstrates
that language matching can effectively utilize existing language
capacity.

Third, numerous refinements could be made to the language
algorithm. Most importantly, there may be benefits from tuning

the model more closely to the patient population based on
contact-tracing interviews. One challenge to doing so, however,
is that contact tracing occurs under substantial time pressure,
such that language fields are not always consistently recorded.
This is why our early monitoring of whether the algorithm in
fact flagged cases with Spanish-speaking needs was important in
implementing the approach.

Fourth, this intervention can be seen as an interim measure
until Santa Clara County is able to routinely and clearly route
language data collected at the point of intervention (i.e., testing
sites) to the electronic data collection systems. This work and
the challenges encountered also demonstrate the need for data
systems that are built to allow for timely analysis of demographic
data so that even in situations of high demand, existing language
skills can be fully utilized.

Fifth, this intervention could be improved by accounting for
fluidity in the language and communication preferences of Span-
ish speakers when collecting language data. The language pref-
erences of an individual may not capture those of the individual’s
household, especially if there are multigenerational family mem-
bers involved, and individuals may prefer a different language
for discussing health concepts than the one they report when
being asked for their language preference or their fluency in
English (17). Training staff to record language information that
reflects a patient’s preferences in the health setting rather than a
rigid assessment of the patient’s English proficiency would make
it more feasible to provide language-concordant care and also
allow for a more refined language algorithm in this context.

We conclude by noting the real promise of this intervention,
which was implemented under the severe circumstances of a
pandemic, with staggering growth in cases and considerable oper-
ational constraints. COVID-19 has had a dramatically disparate
impact across different demographic groups. We have shown that
this light-touch intervention—utilizing an interpretable machine-
learning approach—leveled language differences at a critical
point in pandemic response.

Materials and Methods
Details on Language-Matching Algorithm. The language-matching algorithm
was used for all results reported in the main text. The algorithm uses census
and mortgage data to quantify the relationship between the inputs and
the likelihood of Spanish-speaking status, and it is trained and validated
on voter registration data. Then, we use an algorithm to select cutoffs for
determining which risk scores were eligible for being routed to the LST,
which allowed us to target an estimated caseload for the LST while still
optimizing for precision. We also compare the algorithm’s performance
against a fully machine-learned random forest approach using the same
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features and training and validation data. More details on the im-
plementation and random forest’s performance can be found in
SI Appendix, Methods.

Deployment. Additional work was done to deploy the language-matching
algorithm in the field and embed it in Santa Clara County’s existing contact-
tracing pipeline. First, the algorithm expects CBG as an input to calculate
a risk score for a given individual, so offline geocoding was performed via
record linkage to a list of addresses in Santa Clara County to acquire CBG
data for any case record addresses.

Second, the algorithm needed to be integrated with Santa Clara County’s
contact-tracing pipeline, which used the CalCONNECT database. As a part
of our partnership with Santa Clara County, we reviewed the pipeline and
made improvements to speed up the processing of new cases, which was
necessary for the deployment of the algorithm to effectively route cases to
the LST.

Third, we closely monitored the language-matching algorithm’s perfor-
mance and solicited feedback from all contact tracers using it when we first
deployed it in the Santa Clara County system. This was to check that the
algorithm was actually effectively flagging Spanish speakers in the field.

Details on all of the aforementioned topics can be found in
SI Appendix, Methods.

Propensity Score Matching. To account for the deviations in how contact-
tracing interviews were conducted during the third wave of COVID-19 and
the lower adherence with the assignment protocol in that time period,
we conducted an additional matched analysis using propensity score tech-
niques to construct a balanced matched sample (18). In this approach, the
propensity score for each case was modeled with a logistic regression using
the risk score and a subset of the CBG-level covariates used in the balance
assessment. Details on the matched analysis and the results can be found in
SI Appendix, Methods.

Missingness. To ensure that we were not selecting outcomes that were
heavily imbalanced between the treatment and control groups, we
compared the proportion of missingness for each outcome variable in
SI Appendix, Table S3. Based on this analysis there were no statistically
significant imbalances.

Sensitivity to LST Membership. Because cases assigned to the LST were not
always routed to team members due to unavailability or overflow, they were
sometimes routed to tracers on the periphery of the team. These individuals
were aware of the study and the LST’s purpose and may have been part
of the team for short periods, but were not primary members of the LST.
In Results, we focus on the program effect of being routed to the LST by
omitting assigned cases routed to these secondary team members from the
treatment and control groups. As a sensitivity check we perform the same
analyses but keep cases routed to these secondary team members.

We assess covariate balance on this new dataset in SI Appendix, Table S4.
As before, there are a few small imbalances on some CBG-level variables,
but this can be reasonably expected due to chance alone.

SI Appendix, Table S5 shows the three types of analyses performed: as
randomized, matched, and IV. In the as randomized analysis, the significant

effects on decreases in interviewing time for cases remain. The matched
analysis retains the decrease in interpretation service usage and increase in
likelihood to complete the interview, and the IV analysis retains the effects
showing patients being less likely to refuse interviews and interviews being
more likely to be done sooner. Most of the results hold at less pronounced
levels, which would be expected given the nature of individuals not on the
LST.

IV Analysis. Due to deviations from the assignment protocol during the case
surge associated with the third wave, our research design can be understood
as an experiment with two-sided noncompliance (19). In the IV analysis, we
include batch fixed effects and several preassignment covariates in the two-
stage least-squares estimation. The required identification assumptions for
estimating the CACE are noninterference, random assignment, excludability,
relevance, and monotonicity (19). It is unlikely that there was meaningful
interaction between cases that participated in the pilot, since the CICT
process handled each case in isolation, and random assignment to the LST
(Z) is satisfied by design. Major violations of the exclusion restriction also
seem unlikely. Patients did not have prior awareness or explicit knowledge
of their participation in the pilot or their assignment to the LST. With respect
to relevance, the first-stage results and diagnostics demonstrate that Z has
a strong, nonzero effect on whether the case was actually handled by LST
staff (D). The F statistic is 315.73, with a P value of less than 2.2e-16. Finally,
in assessing the plausibility of the monotonicity assumption, the observed
frequency of noncompliance in the control group is instructive. 1,288 of the
1,599 (80.55%) of the cases assigned to the LST (Zi = 1) were handled by
non-LST CICT staff (Di = 0). Only 29 of the 1,659 (1.75%) cases assigned to
the control group (Z = 0) were handled by the LST (D = 1). Given the way
in which cases were routed during the third wave, it is difficult to imagine
that a meaningfully large group of cases would have systematically defied
their assignment status Z.

Data Availability. Anonymized R object (RDS) and comma-separated val-
ues (CSV) files with postprocessed census data and generated risk scores
from the paper and R code for all algorithms described and analy-
sis carried out in the paper have been deposited in Harvard Dataverse
(DOI: 10.7910/DVN/SF606L). Some study data are available. Voter data from
L2 (https://l2-data.com/), provided through an agreement with Stanford Li-
braries (https://searchworks.stanford.edu/view/12357569), may be accessible
for the purposes of validation or peer-review if Stanford Libraries is first
contacted to seek permissions for these purposes. Data from the Santa
Clara County Public Health Department cannot be shared as they contain
individual-level protected health information.

ACKNOWLEDGMENTS. We thank Jessica Vazquez, Alison Sikola, Sara
Stahlberg, Udari Perera, Theodora Fries, and Miriam Woodward for terrific
help in implementing the language-matching intervention; Ruth Marin-
shaw, Valerie Meausoone, and Addis O’Connor for help with data access;
Mark Kelman, Jenny Lam, Jenny Martinez, Kam Moler, and David Studdert
for help with the data use agreement; Cameron Tenner for research assis-
tance; and Jenny Suckale for helpful comments and conversations.

1. California Department of Public Health, COVID-19 race and ethnicity data.
https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/COVID-19/Race-Ethnicity.aspx.
Accessed 27 May 2021.

2. M. B. Reitsma et al., Racial/ethnic disparities in COVID-19 exposure risk, testing, and
cases at the subcounty level in california: Study examines racial/ethnic disparities in
covid-19 risk, testing, and cases. Health Aff. 40, 870–878 (2021).

3. L. Castañeda, F. Kelliher, D. Debolt, How the Bay Area’s COVID response failed
Latinos. Mercury News, 14 March 2021. https://www.mercurynews.com/2021/03/
14/how-the-bay-area-failed-latino-residents-during-the-covid-crisis. Accessed 14
March 2021.

4. P. Maleki, M. Al Mudaris, K. K. Oo, E. Dawson-Hahn, Training contact tracers for
populations with limited English proficiency during the COVID-19 pandemic. Am. J.
Public Health 111, 20–24 (2021).

5. Z. C. Burger et al., Assessing COVID-19–related knowledge, attitudes, and practices
among hispanic primary care patients: Protocol for a cross-sectional survey study.
JMIR Res. Protoc. 10, e25265 (2021).

6. K. Keisler-Starkey, L. N. Bunch, “Health insurance coverage in the United States:
2019” (Tech. Rep. P60-271, U.S. Census Bureau, Washington, DC, 2020).

7. B. Baquero, C. Gonzalez, M. Ramirez, E. Chavez Santos, I. J. Ornelas, Understanding
and addressing Latinx COVID-19 disparities in Washington state. Health Educ. Behav.
47, 845–849 (2020).

8. B. Lo, I. Sim, Ethical framework for assessing manual and digital contact tracing for
covid-19. Ann. Intern. Med. 174, 395–400 (2021).

9. C. Aschwanden, Contact tracing, a key way to slow COVID-19, is badly underused
by the U.S. Scientific American, 21 July 2020. https://www.scientificamerican.com/
article/contact-tracing-a-key-way-to-slow-covid-19-is-badly-underused-by-the-u-s/.
Accessed 30 March 2021.

10. F. Kelliher, California’s coronavirus contact tracing efforts hampered by lack of bilin-
gual staff. Mercury News, 15 August 2020. https://www.mercurynews.com/2020/08/
15/californias-coronavirus-contact-tracing-efforts-hampered-by-lack-of-bilingual-
staff. Accessed 27 August 2020.

11. National Academies of Sciences, Engineering, and Medicine, Encouraging
Participation and Cooperation in Contact Tracing: Lessons from Survey Research
(The National Academies Press, Washington, DC, 2020). https://www.nap.edu/
catalog/25916/encouraging-participation-and-cooperation-in-contact-tracing-
lessons-from-survey. Accessed 15 April 2021.

12. California Government Code Section 7290 et. Seq., Dymally-Alatorre Bilingual Ser-
vices Act (1973). https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?law
Code=GOV&division=7.&title=1.&part=&chapter=17.5. Accessed 30 August 2021.

13. K. Tzioumis, Demographic aspects of first names. Sci. Data 5, 180025 (2018). PubMed
14. I. Voicu, Using first name information to improve race and ethnicity classification.

Stat. Public Policy (Phila.) 5, 1–13 (2018).
15. L2, Inc., L2 VoterMapping. http://www.l2political.com/products/technology/voter

mapping/registered-users/. Accessed 4 September 2020.
16. A. S. Gerber, D. P. Green, “Sampling distributions, statistical inference, and hypoth-

esis testing” in Field Experiments: Design, Analysis, and Interpretation, A Shin, Ed.
(W. W. Norton & Company, New York, NY, 2012), pp. 71–74.

17. P. Ortega, T. M. Shin, G. A. Martínez, Rethinking the term “limited English pro-
ficiency” to improve language-appropriate healthcare for all. J. Immigr. Minor.
Health, 10.1007/s10903-021-01257-w (2021).

18. P. R. Rosenbaum, D. B. Rubin, The central role of the propensity score in observa-
tional studies for causal effects. Biometrika 70, 41–55 (1983).

19. J. D. Angrist, G. W. Imbens, D. B. Rubin, Identification of causal effects using
instrumental variables. J. Am. Stat. Assoc. 91, 444–455 (1996).

6 of 6 PNAS
https://doi.org/10.1073/pnas.2109443118

Lu et al.
A language-matching model to improve equity and efficiency of COVID-19 contact tracing

D
ow

nl
oa

de
d 

at
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 o

n 
N

ov
em

be
r 

5,
 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109443118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109443118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109443118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109443118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109443118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109443118/-/DCSupplemental
https://doi.org/10.7910/DVN/SF606L
https://l2-data.com/
https://searchworks.stanford.edu/view/12357569
https://www.mercurynews.com/2021/03/14/how-the-bay-area-failed-latino-residents-during-the-covid-crisis.
https://www.mercurynews.com/2021/03/14/how-the-bay-area-failed-latino-residents-during-the-covid-crisis.
 https://www.scientificamerican.com/article/contact-tracing-a-key-way-to-slow-covid-19-is-badly-underused-by-the-u-s/
 https://www.scientificamerican.com/article/contact-tracing-a-key-way-to-slow-covid-19-is-badly-underused-by-the-u-s/
https://www.mercurynews.com/2020/08/15/californias-coronavirus-contact-tracing-efforts-hampered-by-lack-of-bilingual-staff.
https://www.mercurynews.com/2020/08/15/californias-coronavirus-contact-tracing-efforts-hampered-by-lack-of-bilingual-staff.
https://www.mercurynews.com/2020/08/15/californias-coronavirus-contact-tracing-efforts-hampered-by-lack-of-bilingual-staff.
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=GOV&division=7.&title=1.&part=&chapter=17.5.
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=GOV&division=7.&title=1.&part=&chapter=17.5.
http://www.l2political.com/products/technology/votermapping/registered-users/
http://www.l2political.com/products/technology/votermapping/registered-users/
https://doi.org/10.1007/s10903-021-01257-w
https://doi.org/10.1073/pnas.2109443118

