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Abstract. A high degree of publicly available information in a market can enhance 

competition but can also facilitate coordination between firms. A recent example 

highlighting concerns over the use of publicly available information to communicate 

between firms involves the Alberta wholesale electricity market, where, until 

recently, anonymized bidding information was released in near real-time. 

Allegations were raised that firms were using unique patterns in their bids to reveal 

their identities to rival firms and coordinate on higher prices. This paper uses 

machine learning techniques to examine the extent to which firms could identify the 

bids of their rivals in public data, and to describe the patterns observed in these data. 

These techniques can be employed as possible screens to evaluate whether publicly 

available information is being used to identify rival behavior and facilitate 

coordination. 
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I. Introduction 
 

There is a longstanding debate over the impact of information and transparency 

on market competition. It has been shown that information can enhance 

competition by facilitating customers searching for alternative products or lower 

prices from competitors in settings where production costs are unobservable but 

positively correlated, and by allowing firms to respond quickly to the changing 

market environment.1 Alternatively, it is well known that information can facilitate 

coordination and communication across firms by allowing the monitoring of rival 

behavior.2 

 

Regulators often publish de-identified data to mitigate the potential concerns 

associated with information disclosure. However, sophisticated firms may 

undertake actions to reveal their identity by behaving in conspicuous ways. This 

behavior could allow firms to coordinate on high-priced outcomes by, for example, 

setting a high price with a unique pattern to communicate to rivals that the firm 

intends to hold their price at a high-level for an extended period of time. As a result, 

it is important to evaluate firms’ abilities to identify rival behavior using publicly 

available information. Monitoring and detection can be difficult in market settings 

where firms interact repeatedly and can use a multitude of possible pathways to 

reveal information. This creates the need to develop flexible empirical methods that 

can leverage the large dimensionality of the data. We study such a case by looking at 

wholesale electricity markets and employing machine learning techniques. 

 

In this paper, we use a recent example from Alberta’s restructured wholesale 

electricity market, where firms compete by submitting bids in the form of price-

quantity pairs repeatedly (every hour) in a centralized market. Like many wholesale 

electricity markets, Alberta’s market is concentrated and has been shown to be 

susceptible to market power execution.3 In this market, firms can adjust their bids up 

to two hours before the market clears, allowing them to respond quickly to the 

changing environment. Until a change in regulation in 2017, a de-identified list of 

all price-quantity bids used to be released publicly in near real-time, in a report called 

 
1 See Kai-Uwe Kühn & Xavier Vives, Information Exchanges Among Firms and their Impact on 
Competition, EUR. COMM’N WORKING PAPER 1 (1994); Xavier Vives, Strategic Supply Function Competition 
with Private Information 79(6) ECONOMETRICA 1919, 1919-1966 (2011); Pär Holmberg & Frank Wolak, 
Comparing Auction Designs Where Suppliers Have Uncertain Costs and Uncertain Pivotal Status 49(4) 
RAND J. ECON. 995, 995-1027 (2018). 
2 For a detailed discussion in the electricity markets context, see Nils-Henrik M. von der Fehr, 
Transparency in Electricity Markets 2(2) ECON. ENERGY & ENV’T POL’Y 87, 87-106 (2013). 
3 David P. Brown et. al., Evaluating the Impact of Divestitures on Competition: Evidence from Alberta’s 
Wholesale Electricity Market, 89 INT’L J. INDUS. ORG. 102953, 102957-102961 (2023). 
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the Historical Trading Report (HTR). This provided a high degree of information and 

transparency. 

 

In August 2013, Alberta’s Market Surveillance Administrator (MSA) issued a 

report alleging that firms were using the information revealed in the HTR to 

coordinate on higher prices.4 The MSA raised concerns that firms were “tagging” 

their bids on certain days to reveal their identities to rival firms. It was argued that 

these bidding patterns allowed firms to coordinate on high-priced outcomes. These 

concerns led to a hearing and the eventual end of the publication of the HTR in an 

order by the Alberta Utilities Commission.5 

 

Several studies have documented the potential implications of the HTR on 

market outcomes. Olmstead, Ayres, and Lomas6 and Brown and Eckert analyze the 

impact of the information revealed in the HTR and find that it led to higher market 

prices.7 In particular, Brown and Eckert present evidence that firms were earning 

profits in excess of the amount that would arise from unilateral profit maximization 

suggesting that firms were using the HTR to coordinate.8 Most relevant to our 

analysis is the work by Brown, Eckert, and Lin.9 In this paper, the authors identify 

certain bidding patterns used by particular firms and present evidence that firms 

would have been able to identify rivals from the information revealed in the HTR. 

Further, the authors present evidence that firms were adjusting their bidding 

behavior when unique tagging patterns were employed, suggesting that firms were 

responding to the information in the HTR. However, a limitation of this study was 

the use of simple statistics and visual inspection to detect patterns in firms’ bidding 

behavior. It is likely that firms wishing to reveal their identities or communicate with 

rivals could use more sophisticated techniques that visual inspections may not 

readily identify. More broadly, it is important to develop algorithmic screens that do 

not rely on visual detection and time-consuming monitoring. 

 
4 MKT. SURVEILLANCE ADMINISTRATOR, COORDINATED EFFECTS AND THE HISTORICAL TRADING REPORT: 

DECISION AND RECOMMENDATION 8, 8-15 (2013). 
5 ALBERTA UTIL. COMM’N, APPLICATION BY THE MARKET SURVEILLANCE ADMINISTRATOR REGARDING THE 

PUBLICATION OF THE HISTORICAL TRADING REPORT, Decision Proceeding 21115–D01-2017 (2017). 
6 Derek E. H. Olmstead et al., Offer Price Information and the Exercise of Market Power: The Effect of the 
Publication of the Historical Trading Report on Competition in the Alberta Electricity Market, 42 THE 

ENERGY J. 152, 152-161 (2020). 
7 David P. Brown & Andrew Eckert, Pricing Patterns in Wholesale Electricity Markets: Unilateral Market 
Power or Coordinated Behavior?  70(1) J. INDUS. ECON. 168, 190-204 (2022). 
8 Id. 
9 David P. Brown et al., Information and Transparency in Wholesale Electricity Markets: Evidence from 
Alberta 54(3) J. REGUL. ECON. 54 (3) 292, 292-330 (2018). 
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Machine learning techniques seem ideal for this purpose.10 Machine learning 

approaches are designed to use large quantities of data to predict outcomes and detect 

complex patterns that may not be easily detectable by eyeball/manual inspections. 

Typically, machine learning models are trained on large amounts of data and use 

statistical techniques to identify patterns, trends, and relationships in the data. These 

models can then make predictions or decisions based on patterns they learned in the 

past. Additionally, machine learning algorithms are designed to adapt to changing 

data and to improve their performance (continually) over time. This makes them 

particularly useful for applications where the data changes or evolves – such as when 

agents use publicly available information to communicate or signal any particular 

behavior. 

 

In this paper, we employ machine learning techniques to examine the MSA’s 

claim that patterns in bidding behavior would have allowed firms to accurately 

identify the identities of the rivals associated with anonymized bids in the HTR. In 

particular, we consider the problem faced by an individual firm that aims to use the 

de-identified price-quantity offers in the HTR to predict the identities of specific 

rivals. Firms can observe the offers with firm identifications at a 60-day lag, allowing 

them to verify and update their prediction algorithm. Hence, our exercise is one of 

supervised multinomial classification, in which a period of time ending 60 days 

before the current month is the training data sample, and the current month is the 

test sample. We employ both decision tree and random forest algorithms.11 While the 

random forest generally yields higher accuracy scores, the decision tree offers greater 

interpretability, allowing us to trace decision rules, and making them well-suited for 

illustrative purposes. The variables used to predict the identity of the firm behind a 

particular price-quantity offer, which is the output of the model, include different 

functions of the price and quantity (such as the integer and decimal portions of the 

price), as well as measures of the position of the price-quantity offer within the 

distribution. We employ data on all price-quantity offers from December 2012 to 

December 2013. 

 

In general, we find that, before the MSA’s report in August 2013, the identities of 

a firm’s rivals associated with particular offers could be predicted with an overall 

average accuracy of 86%. The most important variables for prediction include 

variables whose values have economic justification (such as the MW size of an offer 

block), but also variables whose economic justification in the absence of 

 
10 David P. Brown et al., Screening for Collusion in Wholesale Electricity Markets: A Literature Review UTIL. 

POL’Y (forthcoming) (manuscript at 1-13). 
11 The motivation to use decision-tree-based algorithms is mainly due to their interpretability, 
versatility, and ability to capture complex, non-linear relationships in the data. 
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communication is unclear (such as the decimal portion of the offer price). The rules 

used by the algorithms reflect patterns that have been previously observed in the data 

through visual inspection but also capture other regularities. Importantly, we find 

that after the 2013 MSA report raising concerns over the use of offer patterns, the 

ability of the algorithms to identify firms from their offers accurately falls 

dramatically—with an accuracy rate lower than 50% in some cases. The reduced 

accuracy coincides with a distinct change in offer behavior where firms adjusted 

their bid strategies that appear to have been much more dispersed and randomized. 

It is worth emphasizing that the machine learning algorithm eventually learned how 

to distinguish the firms after the policy changes occurred in August 2013—when 

firms started to adopt more “randomized” offer price patterns. This tells us that 

machine learning can easily and quickly adjust to changing data environments. 

 

Our findings show that the usage of machine learning algorithms to evaluate if 

firms can use publicly available information to identify rivals is promising. Our 

analysis has important regulatory policy implications because it demonstrates that 

machine learning methods may allow firms to recognize bidding patterns with high 

accuracy. As a result, our analysis suggests that regulators should enhance the 

monitoring of firms’ behavior or reduce the granularity of information provided. 

 

While our analysis focuses on electricity markets, our methods have applications 

in other settings. Pricing patterns that may be associated with coordination have 

been documented in a number of industries. Borenstein documented 

communication via fare codes by airlines.12 Christie and Schultz examine the use of 

odd-eight quotes in Nasdaq stocks.13 Abrantes-Metz, Villas-Boas, and Judge analyze 

the distribution of the second digit of the Libor rate and argue that the unique 

distribution could be associated with rate manipulation or collusion.14 Lewis 

analyzes price endings in U.S. gasoline markets and finds higher and more rigid 

prices in locations that end with 5 and 9, suggesting that these endings may be used 

to establish focal prices. Our empirical methodology is particularly well suited for 

environments where there are numerous informational channels through which 

firms may be communicating.15 

 

 
12 Severin Borenstein, Rapid Communication and Price Fixing: The Airline Tariff Publishing Company Case, 
in THE ANTITRUST REVOLUTION: THE ROLE OF ECONOMICS 1-16 (John Kwoka & Lawrence White eds., 1998). 
13 William G. Christie & Paul H. Schultz, The Initiation and Withdrawal of Odd-Eighth Quotes Among 
Nasdaq Stocks: An Empirical Analysis 52(3) J. FIN. ECON. 409, 409-442 (1999). 
14 Rosa M Abrantes-Metz et al., Tracking the Libor Rate 18(10) APPLIED ECON. LETTERS 893, 893-899 
(2011). 
15 Matthew S. Lewis, Odd Prices at Retail Gasoline Stations: Focal Point Pricing and Tacit Collusion 24(3) J. 

ECON. & MGMT. STRATEGY 644, 644-685 (2015). 
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This paper proceeds as follows. Section II provides background information on 

Alberta’s electricity market and the Historical Trading Report. Section III describes 

our data. The empirical methodology is summarized in Section IV. Section V presents 

our results. Section VI concludes. 

 

II. Background 
 

A. Alberta’s Wholesale Electricity Market 

 

Alberta’s wholesale electricity market operates as a single hourly uniform-priced 

procurement auction. In each hour, firms submit up to seven price-quantity offer 

blocks for each generation asset. The prices are restricted to be between $0/MWh and 

$999.99/MWh and reflect the price at which the generator is willing to make their 

specified output available. Throughout the hour, the Alberta Electric System 

Operator (AESO) that coordinates the market calls upon supply in order of the least 

cost until there is sufficient supply to meet demand. The price of the last unit called 

upon sets the System Marginal Price (SMP). Generation units that supply output in 

the hour are compensated according to the time-weighted SMP, referred to as the 

Pool Price. 

 

Alberta’s wholesale electricity market is an “energy-only” market design. Firms 

do not receive supplementary payments for constructing and maintaining 

generation capacity. Rather, firms must recover all of their costs of operating (both 

variable and fixed) by the payments they receive from producing electricity. 

Consequently, the MSA has indicated that firms are permitted to exercise unilateral 

market power via economic withholding that arises when firms bid units in excess of 

marginal cost to ensure they are not called upon, thus increasing the market price 

that they receive for the energy they continue to generate from their other 

generation assets.16 Market power execution via economic withholding has been 

well-documented in Alberta’s wholesale market.17 

 

In 2013, the sample period of this study, Alberta’s market was moderately 

concentrated, with five large generators having offer control over approximately 

 
16 This differs from many jurisdictions that provide supplementary payments for capacity to recover 
fixed costs. See James Bushnell et al., Capacity Markets at a Crossroads 278 Energy Inst. Hass Working 
Paper 3, 3-18. These market designs are often coupled with regulatory rules that mitigate generators’ 
abilities to bid in excess of marginal cost. Christoph Graf et al., Market Power Mitigation Mechanisms for 
Wholesale Electricity Markets: Status Quo and Challenges  STANF. U. WORKING PAPER 41, 41-49 
17 David P. Brown & Derek E.H. Olmstead, Measuring Market Power and the Efficiency of Alberta’s 
Restructured Electricity Market: An Energy-Only Market Design 50(3) CANADIAN J. ECON. 838; David 
Brown et al. supra note 3. 
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65% of the market’s capacity.18  The remainder of market capacity is supplied by over 

25 small firms with limited generation capacity. TransCanada had the largest offer 

control at 18.1%, followed by ENMAX with 13.4%, TransAlta with 12.8%, Capital 

Power with 10.4%, and ATCO with 9.8%.19 In 2013, Alberta’s generation output was 

primarily supplied by coal and natural gas; coal and natural gas provided 52% and 

38% of the electricity generated, respectively. The remainder was supplied by a mix 

of hydro, wind, and biomass.20  

 

B. Historical trading report 

 

In the wholesale market, firms submit their initial offers the day prior to market 

clearing. Firms can make an unlimited number of adjustments to their price-

quantity offers up to 2 hours prior to market clearing. The purpose of this rule is to 

allow firms to respond to changes in the market environment (e.g., due to uncertainty 

in market demand, wind supply, and generator outages). 

 

Until a change in 2017, generators could observe the anonymized prices and 

quantities for all offer blocks submitted to the wholesale market via the Historical 

Trading Report (HTR). The HTR was released approximately 10 minutes after the 

end of each hour. Consequently, this gives firms a window in which they can use the 

information released in the HTR to adjust their bidding behavior in future hours. 

More specifically, given that firms cannot adjust their bids beyond the 2 hours before 

market clearing and the HTR is published 10 minutes after the hour, firms can adjust 

their offer behavior for hour t+3 using the information revealed in the HTR 10 

minutes after hour t.21 

 

Supporters of the HTR argued that the information revealed in near real-time 

provided generators with important information about market conditions. 

However, in August 2013, Alberta’s Market Surveillance Administrator (MSA) 

released a report alleging that certain firms were using the HTR to facilitate 

coordination. In particular, the MSA suggested that certain firms were "tagging" their 

price-quantity offers through the use of certain patterns in order to reveal the 

identity of the firm associated with the offers, and to communicate their intent to 

maintain high prices. The MSA supported these concerns by documenting a handful 

 
18 As part of industry restructuring in the late 1990s, existing generation capacity owned by three large 
utilities were virtually divested through long-term contracts giving the contract buyer offer control of 
these generating units (the ability to offer the output of these units into the wholesale market). These 
contracts had all expired by January 2021. For additional details, see Brown et al., supra note 3. 
19 MKT. SURVEILLANCE ADMINISTRATOR, MARKET SHARE OFFER CONTROL 1, 1-11 (2013). 
20 ALBERTA UTIL. COMM’N, ANNUAL ELECTRICITY DATA COLLECTION (2021). 
21 Brown et al., supra note 9, at 292–330. 
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of days where unique bid patterns were employed to effectively create a high-priced 

shelf of similarly priced offers that were “tagged”. In subsequent hours, firms would 

raise their offers up near the shelf resulting in a large quantity being offered at these 

high prices, which then often set the market-clearing price. 

 

The MSA’s report led to a subsequent hearing by the Alberta Utilities 

Commission in December 2015, where the MSA recommended the HTR be replaced 

by a report with less granular information on individual price-quantity offers. In 

2017, the AUC concluded that the HTR has the possibility to enhance concerns over 

market power execution and could possibly serve as an avenue for firms to 

communicate to coordinate to achieve higher prices.22 The publication of the HTR 

ended on May 23, 2017. 

 

The MSA’s 2013 report did not document the patterns that they alleged would 

allow firms to reveal their identities and communicate with rivals. Brown, Eckert, 

and Lin identify several different patterns via visual inspection in the bidding data.23 

In addition to a tendency for certain firms to employ specific quantity block sizes 

(which may simply reflect the sizes of different generation assets), patterns in the 

prices offered were also identified.24 One of the patterns that was identified involved 

the behavior of the firm TransCanada. This pattern involved the price endings (i.e., 

the digits after the decimal). On the first day of the month, TransCanada’s non-zero 

offer prices would end in 0.06, or in 0.06 plus a multiple of 0.09. On the second day of 

the month, prices would end in 0.07, plus multiples of 0.9. The starting price endings 

would increase to 0.8, 0.9, 0.19, 0.29, and 0.39 over the fourth to seventh days of the 

month, before dropping down to 0.06 again on the eighth day. 

 
                                    A. TransCanada, January 2013                                                                B. TransCanada, September 2013 

Figure I: Scatter Plots—TransCanada 

As an illustration, Figure I.A plots all non-zero price endings for TransCanada, by 

day, for January 2013. Brown, Eckert, and Lin report that 86% of all of TransCanada’s 

 
22 Alberta Util. Comm’n, supra note 5. 
23 Brown et al., supra note 9, at 301-306. 
24 Brown & Eckert, supra note 7, at 191-204. 
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offer prices over $100/MWh from January 2011 to June 2013 conformed to this 

pattern.25 Notably, this pattern in price endings disappeared following the release of 

the MSA’s report in August 2013 detailing its concerns. As an example, Figure I.B 

shows TransCanada price endings for September 2013; following the MSA report, a 

high degree of randomness is observed in TransCanada’s price endings. 

 

Different types of patterns have also been identified in the bids of other firms. 

For example, Brown, Eckert, and Lin document the use by Capital Power of a 

sequence of prices with price endings of zero that are separated by exactly $1.26 This 

pattern creates a “shelf” in the offer curve. As an example, Figure II.B shows all non-

zero price-quantities offered by Capital Power for the hour from 7:00-8:00 AM on 

March 4, 2013. As illustrated in the market-level supply curve plotted in Figure II.A, 

the series of Capital Power offers with prices ranging from $974 to $980 created a 

large vertical portion in the supply curve. 

 

 

Price Block Size 

7.75 145 

7.76 132 

10.75 9 

10.76 9 

740.00 10 

741.00 10 

974.00 43 

975.00 70 

976.00 27 

977.00 70 

978.00 27 

979.00 123 

980.00 207 

 

Figure II.A: Capital Power Offers 

 

 

 

 
25 Brown et al., supra note 9, at 303-304. 
26 Id. at 304-306. 
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Figure II.B: March 4, 2013 offer curve 

 

The bidding patterns reported in Brown, Eckert, and Lin were identified through 

visual inspection and simple statistics, including the frequencies with which the 

firms employ certain prices, price endings, or block sizes, and the first differences 

between prices in a firm’s offer stack.27 More complicated bidding patterns are likely 

to go undetected using these approaches; as a result, more sophisticated statistical 

techniques that utilize the large dimensionality of the data to evaluate how well firms 

can identify their rivals are desired. More broadly, this setting provides us with an 

opportunity to illustrate the potential ability of machine learning to evaluate if firms 

were able to identify their rivals with a high degree of accuracy. 

 

III. Data 
 

Our analysis considers the period December 3, 2012 – December 31, 2013, and 

relies on publicly available hourly data from the Alberta Electric System Operator’s 

Merit Order Snapshot dataset. These data include the observed (final) price and 

quantity bids for all generation units, the generation company that had offer control 

of each unit, import supply from neighboring jurisdictions, and market demand. It 

is important to note that the data are released with a 60-day lag and include the 

identity (or label) of the firms associated with each asset, information that would not 

be available in the HTR released immediately after each hour. 

  

In our analysis, we ask whether firms could identify the rival firms associated 

with each price-quantity bid in the merit order data for a particular hour by using 

 
27 Brown et al., supra note 9, at 301-304. 
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features of the prices and quantities in the different bids.28 Because the focus of the 

MSA’s 2013 report was on the bidding behavior of three specific large firms (ATCO, 

Capital Power, and TransCanada), we label each offer as coming from ATCO, Capital 

Power, TransCanada, or ‘Other;’29 we then consider the ability of each of the three 

firms to identify the label associated with each rival offer correctly. 

 

Our sample period was chosen for two key reasons. First, our data covers part of 

the period in which the MSA alleged that firms were using the information revealed 

in real-time to communicate with other generators. Second, prior to December 3, 

2012, the AESO’s data does not include the offer control of every price-quantity 

block. This limits our ability to evaluate ex-post if the de-identified data released in 

the HTR could have been used to identify the firm submitting the bid correctly. 

 

A. Input variables  

 

The purpose of our empirical exercise is to determine, using machine learning 

techniques, the accuracy with which firms could identify the rival firms associated 

with different price-quantity offer blocks observed in the HTR. This requires 

presenting the machine-learning algorithms with the information contained in the 

HTR in a sufficiently general way to allow the detection of patterns that may be 

present. To do this, we construct variables based on the prices and quantities of each 

offer in an hour, and the relationships of those offers to others in the same hour. 

Table A.1 in the appendix provides detailed definitions of each of the input variables. 

 

We include basic properties of the price-quantity offers submitted by firms, 

including the quantity offered (q block size), the integer portion of the price (price int), 

and the decimal portion of the offer price (price decimal). We break up the offer price 

into both the integer component and the decimal to capture the fact that firms may 

 
28 In addition to reporting the final price and quantity associated with each offer for a particular hour, 
the HTR reported the initial price-quantity submission for that offer block for that hour, submitted 
the previous day. Unfortunately, these data are not included in the Merit Order Snapshot dataset and 
are no longer available historically. It is possible that firms may have been able to send messages 
through their final offers, but also through the initial offers, or changes between initial and final 
offers. Hence, the ability of firms to communicate through the HTR may have been stronger than our 
analysis will indicate. 
29 As Table A.2 in Appendix A reveals, we have the following frequency for each label in our database: 
11.40% for ATCO (99,277 obs); 13.40% for Capital Power (116,465 obs); 15.9% for TransCanada 
(138,340 obs) and 59.40% for the firms grouped and labeled as Other (518,144 obs).  There are two large 
firms in the Other category, ENMAX and TransAlta. The remaining bids are made by more than 25 
small firms. ENMAX is vertically integrated in the retail market, while TransAlta’s capacity was 
primarily cogeneration which is must-run and hydro generation that was subject to long-term contracts 
during our sample period. Both aspects led these firms to bid competitively. For more details on 
Alberta’s market structure, see Brown et al., supra note 3, at 102957-102961. 
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be using both elements to signal to their rivals, as was alleged in reference to the price 

decimals. It is possible that firms may be placing their offers in the “stack” of other 

offers to communicate with their rivals. For example, firms may be bidding a price 

slightly above their rivals to signal that they intend to coordinate on high-priced 

outcomes and not subsequently undercut their rivals’ high-priced offers. To capture 

the relationship of an offer to other nearby offers, we sort all offers in ascending 

order of price, and construct the difference between the price, price ending, and 

quantity of a block, and those of the next lowest and highest blocks (Dprice up, Dprice 

down, Dpdec up, Dpdec down, Dquant up and Dquant down). For example, for the middle 

offer of the sequence of price-quantity offers (200.10, 45), (230.25, 60), and (240.95, 

55), Dprice up = 10.70, Dprice down = 30.25, Dquant down = 15, Dquant up = −5, Dpdec 

down = 15, and Dpdec up = −5. 

 

As the portion of the price ending following the decimal is less likely to be driven 

by economic considerations, there may be more scope for signaling through price 

endings. Because of this, we construct additional variables based on the decimal price 

ending of an offer. In particular, we sort the decimal price endings used in each hour, 

and compute the rank of the price ending from highest to lowest (rank), the frequency 

of offers in the hour employing that price ending (dec freq), and the distance between 

that price ending and the next lowest price ending (decimal diff ).30 Table A.2 presents 

summary statistics of the input variables for each of the firms. 

 

IV. Empirical Methodology 
 

Advances in data analytics naturally pave the way for regulators to integrate new 

(and easy-to-implement) detection tools and methodologies, such as machine 

learning, into economic analysis to improve enforcement and policy.31 Algorithmic 

screening may overcome the drawbacks related to traditional inspection methods, 

such as eyeball/manual examination, structural changes, and causal inference 

analysis. Thus, machine learning is a promising way to identify communication 

strategies firms may employ through public data. 

 

The intuition of our classification exercise is as follows. Consider a large firm that 

observes the offers of rival firms without identifiers in the HTR. The machine 

learning algorithm will be presented with information on an offer, such as its price, 

 
30 The machine learning algorithm can handle a large number of additional variables. As a robustness 
check, the set of variables was extended to include similar additional statistics based on block size and 
price integer. These additional variables led to marginal improvements in the predictions, but the 
overall qualitative conclusions are robust. 
31 Susan Athey & Guido W. Imbens, Machine Learning Methods that Economists Should Know About 11 
ANN. REV. ECON. 685, 686-689. 
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quantity, and price ending, and must classify the offer as coming from one of the 

firm’s rivals. We use explanatory variables (attributes) based on firms’ price-quantity 

offers. The data we use to train the model has labels to identify the firms attached to 

these bids. We use decision-tree-based classifier algorithms (Decision Tree and 

Random Forest) based on these attributes to predict the identity of the firms 

(outputs) associated with a particular price-quantity offer. We then use these 

algorithms on the de-identified HTR data to evaluate how well we can correctly label 

the identities of rival firms. 

 

In Section IV.A, we introduce the supervised machine learning model we use to 

predict the identities of the firms and to inspect how firms may have used the 

available public information to coordinate their market behavior. Sections IV.B and 

IV.C explain how we train/test and evaluate the machine-learning algorithms, 

respectively. Section IV.D presents the Permutation Importance (PI) technique we 

use to assess the relationship between the explanatory variables and the target 

variable (the identities of the firms). This step identifies the input variables that are 

most useful in predicting the identity of the firms associated with individual offers. 

 

A. Decision Tree and Random Forest 

 

A decision tree classifier uses a tree-like structure to classify (label) input data. The 

general approach to constructing a decision tree involves recursively partitioning the 

attributes into regions, with each region corresponding to a node in the tree. The goal 

is to create decision rules that accurately classify new input data instances.32 Figure 

III illustrates how the decision tree algorithm classifies the data using the following 

simplified example with only four attributes. 

 

The decision rules are guided by nodes and branches. Each node represents a 

decision based on an attribute of the data, and each branch represents the outcome of 

that decision. Therefore, nodes play a crucial role in the classification process by 

allowing the model to make decisions about how to classify the input data based on 

the information contained in each attribute. At the top of the tree, we have the root 

node, i.e., the first decision made. The decision tree algorithm calculates the 

“impurity” of the tree nodes to select the best attribute to split the data and separate 

the classes.33 Essentially, this procedure seeks to find the input variable (attribute) 

that results in the most “homogeneous” child nodes, where each child node contains 

 
32 GARETH JAMES ET AL., AN INTRODUCTION TO STATISTICAL LEARNING 327-361 (2013). 
33 Impurity is a measure of how mixed the classes are at a given node. Two common ones are Gini 
impurity and entropy. See id., at 312-321. 
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mostly one class. By doing so, it can create a tree that effectively separates the classes 

in the data. From the root node, the tree branches out into multiple paths. These paths 

represent distinct possible outcomes of the decision. Each subsequent node tests 

different attributes of the data, and the tree continues to branch out until a final 

decision is reached at the bottom of the tree. This final decision is called a leaf node 

and represents the classification or prediction made by the model. 

 

 
Figure III: Decision Tree with Four Attributes Example 

 

Random forest is an ensemble learning method largely used for classification 

problems in machine learning. It combines the outputs of multiple decision trees to 

improve the accuracy of the classification model. The basic idea is to build a large 

number of decision trees, each on a randomly sampled subset of the training data and 

using a random subset of the attributes. Each decision tree is trained independently, 

and its prediction is combined with those of the other trees in a majority vote.34 

Random forests have a greater ability than decision trees to learn the actual structure 

of the data. Unlike decision trees, random forests are less likely to overfit the data, as 

they use only a portion of it and a subset of the original input variables. This allows 

 
34 In majority voting, we first group the outputs (i.e., the labels predicted) by the individual trees. Then, 
the most frequent output is voted as the final predicted label. 
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them to learn only the essential aspects of the data. Another advantage of random 

forest algorithms is their robustness to noise and outliers in the data.35 

 

B. Training and Test Samples 

 

When training a machine learning model, it is common to use more data for 

training than for testing, as we are ultimately interested in how well our model can 

generalize to new – and unseen – data. The data used for testing serves as a proxy for 

this new data. While there is no fixed rule for how much data to use for training and 

testing, a common industry practice is to use a split of 75% for training and 25% for 

testing, or 70% for training and 30% for testing. Ultimately, the split choice should 

depend on the specific application and the available data.36 In our application, we use 

a three-month training sample for each one-month test sample. Our training set 

contains approximately 75% of the total observations, and our test set computes out-

of-sample predictions of approximately 25% of the sample. The classification task is 

carried out on a rolling window scheme because the dataset with the identity (or label) 

of the firms is released with a 60-day lag.37 In other words, to predict the identity of 

firms in May 2013 (test sample), we used data for December 2012, January 2013, and 

February 2013 as the training sample. We apply this same procedure to predict the 

identity of firms in subsequent months (June 2013 to December 2013). 

 

It is worth mentioning that while we use the identity of the firms to train our 

supervised machine learning algorithm based on the AESO’s Merit Order data, we 

remove their identities in the test set to evaluate the predictive performance. 

Consequently, the (test) data used in our analysis provide the de-identified final bids 

that would have been published immediately after the hour. These data provide us 

with a rich set of data that can be used to evaluate if firms were able to identify their 

rivals using this information with a high degree of accuracy. We use the cross-

validation approach to compare and select the best machine-learning model based on 

its ability to predict new data.38 

C. Evaluation Metrics 

 

 
35 Trevor Hastie et al., Boosting and Additive Trees, in THE ELEMENTS OF STATISTICAL LEARNING: DATA 

MINING, INFERENCE, AND PREDICTION 337, 351 (Trevor Hastie, Robert Tibshirani, & Jerome Friedman 
eds., 2009); Leo Breiman et al., Introduction to Tree Classification, in CLASSIFICATION AND REGRESSION TREES 
55-58 (1984). 
36 Id.; James et al., supra note 32. 
37 In machine learning classification tasks, a labeled dataset refers to a set of data instances having an 
associated label (or class) representing the true output or target for that input, these labels are also 
referred to as input examples. 
38 Cross-validation may flag overfitting. Intuitively, overfitting describes the case in which the model 
performs well for the training dataset but generates poor predictions for new data. 
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As we propose a classification task using a labeled dataset, we evaluate our 

findings by comparing our out-of-sample predictions with the firms’ actual 

identities by assessing the Precision and f1-score metrics. Precision quantifies the 

number of correct predictions. More precisely, Precision is the fraction of times that 

the algorithm is correct when it labels an offer as coming from a specific firm. Thus, 

high Precision is associated with a low incidence of Type I errors (false positives). As 

an example, a false positive in our analysis would reflect a situation where ATCO does 

label a firm as being “TransCanada” when it is not “TransCanada”.39 

 

To understand the f1-score, we first must introduce the Recall metric. A high Recall 

is associated with a low incidence of Type II errors (false negatives). For example, a 

false negative in our analysis would reflect a situation where ATCO does not label a 

firm as being “TransCanada” when it is “TransCanada”. This reasoning is analogous 

to predictions related to “Capital Power” and “Others”. To achieve maximal Precision 

(no false positives) and Recall (no false negatives), there must be an absence of type I 

and II errors, respectively. The f1-score provides a single score that balances (via the 

harmonic mean) the concerns of both Precision and Recall in the same measure.40 

 

To analyze further the model’s predictive power and how that power changed 

following the release of the MSA’s 2013 report in August, we consider Receiver 

Operating Characteristics (ROC) and Area Under the Curve (AUC) metrics.41 ROC is a 

widely used performance metric in machine learning classification tasks and 

measures the ability of a classifier to distinguish between positive and negative 

classes by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR). 

The ROC curve relies on a probabilistic model that outputs the probability of an 

observation belonging to the positive class—popularly named as “class 1”, which is the 

class we want to predict. So, the model outputs probability values (between 0 and 1). 

Thus, to build the ROC curve, we use these model outputs and establish a threshold, 

i.e., the point at which a classifier outputs positive (class 1) or negative (class 0) 

predictions. The most common value for the threshold is 0.5, but to plot the ROC 

curve, we use the interval [0,1]. Therefore, to draw the ROC curve, we run the 

classification model on a test set of labeled data and use the predicted class 

probabilities to generate a set of predictions for different probability thresholds. 

 

 
39 In our applications, false positives are more costly or harmful than false negatives. For example, a 
false positive for ATCO (incorrectly identifying Capital Power or TransCanada) can lead to "wrong" 
communication/coordination strategies. Hence, ATCO would prioritize precision over recall to reduce 
false positives. 
40 f1-score = 2 x [(Precision x Recall) / (Precision + Recall)]. 
41 Andrew P. Bradley, The Use of the Area under the ROC Curve in the Evaluation of Machine Learning 
Algorithms, 30 PATTERN RECOGNITION 1145 (1997). 
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In our analysis, positive classes represent the label of the specific firm we aim to 

identify. For example, if ATCO wants to predict TransCanada, then TransCanada 

represents the positive class—and Capital Power and Others the negative class. While 

TPR measures the classifier’s ability to identify TransCanada correctly, FPR 

measures the classifier’s tendency to misclassify TransCanada.42 We can plot 

different points on the ROC curve by varying the threshold for classifying instances 

as positive or negative. The closer the curve is to the top-left corner of the plot, the 

better the classifier is at distinguishing between the two classes. The area under the 

ROC curve (AUC) measures the classifier’s performance. An AUC of 1 indicates a 

perfect classifier and an AUC of 0.5 points to a random classifier. In summary, the 

ROC measure provides an intuitive way to evaluate the trade-off between TPR and 

FPR. This helps us to assess the overall performance of our classification model. 

 

D. Permutation Importance (PI) 

 

We employ Permutation Importance (PI) to determine which variables are most 

important for predicting the identities of rival firms. Permutation Importance is a 

technique used in machine learning that helps to identify the variables that 

contribute the most to the predictive power of a model.43 The idea behind the 

technique is relatively simple: by randomly permuting (i.e., shuffling) the values of a 

given variable in the dataset and observing how much the model’s performance 

decreases, we can estimate the importance of that variable.44 Intuitively, PI measures 

the decrease in a model accuracy score when a single feature value is randomly 

shuffled, and can be summarized as follows: (i) train a model on a dataset including 

all input variables to calculate its performance on the test sample; (ii) randomly 

shuffle the values of a single input variable in the test sample while all other variables 

remain unchanged to calculate the model’s performance again on the shuffled 

dataset; (iii) compare the original performance metric to the shuffled performance 

metric to observe how much the model’s performance decreased; and (iv) rank the 

variables by the decrease in the model’s performance. More important variables will 

lead to larger decreases. 

 

 
42 Typically, ROC curves apply to binary classification tasks, where the True Positive and False Positive 
rates are unambiguous. In the case of our multiclass classification, we must binarize the outputs to 
provide a notion of both True Positive and False Positive. To reach that aim, we use the One-vs-Rest 
scheme to compare each class (“TransCanada” for instance) against all the others (“Capital Power” and 
“Others” assumed as one). 
43 André Altmann et al., Permutation Importance: A Corrected Feature Importance Measure, 26 
BIOINFORMATICS 1340 (2010). 
44 Broadly, using the PI technique, we can standardize the base rule to compare the predictive 
importance of the explanatory variables of various algorithms - including those that do not have such 
attributes or use subtly different mechanisms for this aim. 
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Suppose we have a variable with a PI of 0.15. In practical terms, this variable leads 

to a 0.15 decrease in the model accuracy score when replaced by its shuffled version. 

We can also interpret the PI score in relation to other attributes within the same 

model—and use it as a tool for variable selection or understanding the relative 

importance of different input variables in the model’s predictions. Thus, following 

these steps for each input variable, PI allows us to identify which input variables are 

the most important in making accurate prediction. 

 

V. Results 
 

In this section, we present the results from the usage of the decision-tree-based 

algorithms to predict the identities of rival firms associated with particular price-

quantity offers. To illustrate and provide intuition for our main results, we first 

consider the perspective of a single firm (ATCO); specifically, we consider to what 

extent ATCO could correctly predict which rival offer blocks come from Capital 

Power, TransCanada, or Other, based on the most recent three months of training 

data for which identifying information is available. We categorize in the label 

“Other” all the remaining firms in the data set. In section V.A we first present the 

results for ATCO using a random-forest algorithm; we then discuss results using a 

simple decision tree algorithm in order to gain intuition on the rules ATCO could use 

to identify its rivals. Finally, Section V.B provides an overview of the results from the 

perspective of Capital Power and TransCanada. 

 

A. ATCO 

 

To better understand and evaluate the random forest classifier’s performance, we 

first use the illustration of Figure 4 to assess the average Precision and f1-score – from 

May 2013 to December 2013—for each individual class. ATCO can identify Capital 

Power with an overall average Precision of 0.78 and 0.64 f1-score and recognizes 

TransCanada with an average Precision of 0.74 and 0.67 f1-score. It is worth noting, 

however, that these scores are distinctly higher between May 2013 and July 2013, 

especially for TransCanada, where we find an average Precision and f1-score given by 

0.88 and 0.81, respectively. We observed a noticeable fall in the score metrics between 

August 2013 and October 2013, which led to a decrease in the average performance— 

after this period, it started to increase again between November 2013 and December 

2013. Although it is possible to notice a downward trend for the firms labeled as 

"Other," it is not as striking as those we found for Capital Power and TransCanada. 

Figures IV.A and IV.B show that following the MSA’s August 2013 report alleging 

that firms were tagging offers, the ability of ATCO to identify the offers of 

TransCanada declined sharply, with Precision and f1 scores falling from above 0.8 in 
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July to below 0.5 and 0.4 in September. This result suggests that the dramatic change 

in TransCanada’s price ending pattern in August may have had an important 

negative effect on the ability of rival firms to recognize TransCanada’s offers. 

Notably, however, we see an increase in this ability by November, once 

TransCanada’s new price-ending behavior has started appearing in the training data. 

Hence, our results suggest that even with the switch to random and noisy price 

endings, TransCanada’s offers can be identified. 

 

 
Figure IV.A: Precision 

 

 
Figure IV.B: f1-score—ATCO 

 

Figures V.A and V.B illustrate the rates of correct predictions (on the vertical axis) 

versus the fraction of errors on the horizontal axis. In the best scenario, the rates of 

correct predictions and errors would be null, respectively. Then, a perfect prediction 

would occupy the coordinate (0,1) in the upper-left corner of the graph. Furthermore, 

the ROC curve captures the true and false positive rates for different classification 
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threshold probabilities. Poor quality predictions form a diagonal (dashed in black) 

line from coordinate (0,0) to coordinate (1,1). Along this dashed line, the algorithms 

predict all firms as Capital Power or TransCanada. Predictions lying below this 

dashed line have little or no ability to distinguish Capital Power from TransCanada. 

 

From Figures VA and VB, we can see, in relative terms, a decrease in the ability of 

the random forest algorithm to identify Capital Power and TransCanada in the 

period ranging from June 2013 to September 2013. Generally, an AUC score of 0.8 

indicates that the model has a high level of discriminatory power and is able to 

distinguish between positive and negative instances with reasonable 

accuracy.45 Thus, the AUC value we achieve (0.82) still points to a good performance 

of the model and may give us some clues about the broader concerns of having a large 

set of information revealed in near real-time to get the following conclusion: as long 

as there are enough randomized-looking patterns, a machine learning algorithm 

could learn these patterns to predict identities relatively well in our setting. 

 

Recall that, until August 2013, firms were signaling via price decimals, mainly 

TransCanada and Capital Power—and their pattern was duly captured by the 

attributes of the model, in particular the “dec freq” input variable, as shown in Panel 

(A) of Table 1. Even when firms stopped signaling via the (frequency of) price 

decimals, it was still possible to reach a satisfactory level for AUC in September 2013. 

Therefore, the main takeaway is that – at a relatively moderate cost in terms of 

forecasting error – our model manages to predict the identity of companies even 

when they do not send signals to rivals with well-defined (and frequent) price 

decimals patterns. 

 

 
45 DAVID W. HOSMER JR. ET AL., APPLIED LOGISTIC REGRESSION 173-182 (3rd ed. 2013). 
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Figure V.A: ROC Curve—ATCO June 2013 

 

 
Figure V.B: ROC Curve—ATCO September 2013 
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Table I presents the results of the PI technique when applied to ATCO’s 

classification exercise using the random forest algorithm. In the first column of each 

panel, we show the estimated increase in prediction error when we replace each input 

variable with its random shuffling counterpart. The drop in the model accuracy 

captures how much the identification of the firms depends on each input variable. In 

Panel (A), q block size has a Permutation Importance of 0.118. This tells us that the 

drop in the model accuracy when we replace q block size by its random shuffling 

counterpart is given by 0.118. In addition, we see that the “top-four” input variables 

to predict TransCanada and Capital Power identities (from May 2013 until July 2013) 

are q block size, price int, price decimal, and dec freq. This is not observed in Panel (B), 

where the input variable dec freq is the less relevant variable. In fact, this suggests that, 

from August 2013 until December 2013, dec freq decreases the ability of ATCO to 

predict TransCanada and Capital Power identities. We find similar outcomes in the 

cases where we evaluate Capital Power’s and TransCanada’s ability to predict their 

rivals’ identities (see Tables B.1 and B.2, respectively). 

 

 
Table I: Permutation Importance—ATCO 

 
A. 1. Paths and Thresholds to Identify TransCanada 

 
Figure VI presents the decision tree model estimates to predict which blocks are 

TransCanada.46 In this illustration, we are taking the decision rule developed on the 

training sample and applying it to the test sample (May 2013). For reference, there 

are a total of 51,344 blocks. Of these, 63% are Other, 15% are Capital Power, and 22% 

are TransCanada. 

 

 
46 It is important to emphasize that the results of the decision tree classifier presented here have a 
didactic purpose since its decision rule may be more easily interpreted. We performed cross-validation 
analysis to determine the decision tree's minimum split node size and maximum depth. In addition, we 
used the balanced class weight mode to adjust weights proportionally to class frequencies in the input 
data. We also summarize the results for this particular decision tree in Appendix B.2. 
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The first cut separates blocks based on whether the block size is less than 66.5 or 

greater than 66.5. There are 46,244 blocks with a size less than 66.5, and 5,100 blocks 

with a size greater than 66.5. TransCanada represents 25% of the blocks with a size 

less than 66.5, but only 2% of blocks greater than 66.5. Hence, as our focus here is to 

describe the path allowing us to predict TransCanada, we must follow the left side of 

the tree. Note that the right side of the tree would be interesting to follow the path 

that allows us to identify Capital Power – since the percentage of blocks larger than 

66.5 provided by Capital Power increases to 35%.47 

 

 
Figure VI: Decision Nodes Used by ATCO to Identify TransCanada 

The parentheses contain the number of blocks at each node. The braces provide the percentage of 

observations that are Other, Capital Power, and TransCanada, respectively. TransCanada block 

percentages at each node are in bold within the braces. 

 

Within the set of blocks smaller than 66.5, the algorithm’s next cut is to divide 

blocks according to whether the price ending (price decimal) is less than or greater than 

5.5 (note that a price of 20.05 has a price decimal ending of 5, for example). Of the 

 
47 It is worth mentioning that although most instances labeled as TransCanada are in the leaves on the 
left branches of the tree, the right branches can also contain leaves associated with the TransCanada 
pattern. Likewise, although the right side of the tree would make it possible to map Capital Power, the 
tree’s left side may also allow us to identify it correctly. 
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11,925 blocks in this subset that have a price ending less than 5.5, only 1% are 

TransCanada. In contrast, 33% of the 34,324 blocks in this subset that have a price 

ending greater than 5.5 are TransCanada. 

 

Essentially, the algorithm has decided that to find TransCanada blocks, it should 

focus on blocks smaller than 66.5 and have price endings greater than 5.5. The latter 

is interesting since we know from our previous (eyeball) examination of price 

endings that TransCanada’s price endings are almost always 6 and higher. 

 

Along this path, the next step is to separate the blocks with price endings less than 

84.5 from those with endings greater than 84.5. Again, this fits neatly with our 

pattern; in May 2013, greater than 99% of all of TransCanada’s blocks had price 

endings of 84 or smaller, and 84 fits within TransCanada’s pattern. Of the blocks 

along this path that have price endings greater than 84.5, only 1% are TransCanada, 

so we will not follow that path further in this discussion. 

 

Focusing on blocks that have less than 66.5 MW, and price endings from 6 to 84, 

the algorithm then looks at dec freq, which is the percentage of blocks in the hour that 

share the same price ending as the block in question. Note that within the entire 

sample, the only price ending that has large frequencies is 0. Looking at blocks less 

than 66.5 MW and with price endings from 6 to 85, dec freq ranges from 1 to 14 with 

a mean of 3.5. The algorithm divides the blocks in our current subset according to 

whether dec freq is less than or greater than 1.5. Of the 5,992 blocks in the subset that 

have dec freq<1.5, only 5% are TransCanada; in contrast, of the 22,653 blocks in the 

subset with dec freq>1.5, 49% are TransCanada. This seems to capture that on a given 

day, TransCanada uses a small number of price endings, so that the same ending is 

used on multiple blocks. 

 

The tree we present here shows a couple of more steps. It separates the subsample 

by price integer (threshold 10.5) and price ending again (threshold 48.5). The latter is 

interesting since it captures a breakpoint in TransCanada’s price-ending pattern – in 

that, it uses endings in the ranges [42-48] and [51-57], but the pattern never lands on 

price endings of 49 or 50. This sort of threshold shows up in other decision rules as 

well. Likewise, there are paths that identify blocks as TransCanada if they have price 

endings between 82.5 and 84.5. 

 

B. Capital Power and TransCanada 

 

Qualitatively, as illustrated by Figure B.1 in Appendix B, the results obtained for 

Capital Power and TransCanada are similar to those found for ATCO. In general, we 
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observe that the forecasts made between May and July 2013 have substantially higher 

Precision and f1-score rates. There is a significant drop in the ability of firms to 

predict the identity of rivals between August and October 2013.48 

 

Figure B.2 illustrates the AUC for Capital Power and TransCanada. As observed 

for ATCO, we notice a decrease in the AUC metrics when we compare June 2013 with 

September 2013. However, their values still point to a good performance of the 

model. This provides additional evidence that machine learning algorithms could 

learn patterns to predict identities relatively well, even after the policy change 

observed in August 2013. 

 

Table B.1 summarizes the permutation importance outcome for Capital Power. 

In Panel (A), we see that the top-four input variables to predict TransCanada and 

ATCO identities (from May 2013 until July 2013) are price int, q block size, price 

decimal, and dec freq. In Panel (B) we observe the following top-four input variables: 

price int, q block size, Dprice up, Dprice down – and dec freq is the less relevant variable 

between August 2013 and December 2013. B.2 shows the outcomes of the 

permutation importance technique for TransCanada. The top-four variables in Panel 

(A) are price int, q block size, price decimal, and Dprice up. On the other hand, the top-

four variables to identify Capital Power and ATCO are price int, q block size, Dprice up, 

and price decimal. Finally, it is worth noticing that when TransCanada wants to 

identify ATCO and Capital Power between August 2013 and December 2013, the 

inclusion of the variable dec freq does not necessarily decrease its accuracy. This 

outcome presented in Panel (B) is different (opposite) from when ATCO (Capital 

Power) is trying to predict Capital Power (ATCO) and TransCanada offer prices. 

 

VI. Future Steps 
 

In this paper, we illustrate the potential benefits of machine learning tools to 

competition policy enforcement by applying them to a case of possible coordinated 

behavior in Alberta’s wholesale electricity market. In particular, in 2013, the Alberta 

Market Surveillance Administrator alleged that firms were employing patterns in 

their bids, allowing rivals to identify them in anonymized public data and potentially 

sending signals about bidding intentions. While previous studies of this case have 

used visual data inspection and simple summary statistics to search for bidding 

patterns, we employ a more rigorous approach by using machine learning algorithms 

 
48 Much of the downward trend in both the f1-score and precision metrics observed for TransCanada 
and Capital Power is driven by the drop in August 2013. Before the drop, the downward trend was not as 
apparent. For ATCO, the bids more randomly and less predictably in June and July 2013 may have 
driven this downward trend. 



“Information and Transparency” 

 
 

 
 

 
                                               2023                                                       
 

 
 

 
 

223 

to examine whether firms could identify their rivals’ offers in public data. In 

addition, we consider which features and characteristics of price-quantity offers are 

most important in revealing firms’ identities. 

 

We find, using random forest algorithms, that before the release of the MSA’s 

report, the ability of firms to identify large rivals through public bidding data was 

high, but this ability declined when firms adjusted their bidding behavior after the 

report was released. We find that the bid characteristics that contribute most to 

identifying the firms associated with particular bids include features that likely have 

physical or simple economic justification (such as the quantity of the offer or the 

integer portion of the price), but also characteristics such as the decimal price ending 

and the frequency of price endings whose justification is less obvious in the absence 

of signaling and communication. Therefore, our results suggest that the 

recognizability of firms in public offers is at least partly the result of deliberate 

behavior. 

 

Our analysis has important regulatory applications in settings where firms 

interact repeatedly and have access to high-frequency publicly available data. Our 

results highlight the potential use of emerging machine learning and data mining 

techniques to evaluate if firms can use de-identified data to identify rival behavior. 

In particular, these empirical methods could be used to develop ex-ante screens to be 

employed on an ongoing basis by regulators to monitor firm behavior.49 These 

screens can identify which firms should be subject to further scrutiny. It is important 

to note that a key goal of such screens is to minimize the number of errors that either 

wrongly flag behavior as reflecting communication and/or collusion (a Type I error) 

or fail to identify such behavior (a Type II error). A key challenge facing regulators is 

to strike a balance between enforcement and the allocation of costly resources to 

monitor behavior. If regulators conclude that firms are using publicly available 

information to communication, they may need to change policies to reduce the 

amount of granular information that is made available to firms.  

 

Our paper suggests several directions for future research. First, our analysis 

considers the case of Alberta’s wholesale electricity market. Future research should 

consider alternative jurisdictions and industries to demonstrate the potential 

applicability of machine learning techniques in informing regulators about the 

appropriate level of information disclosure. Second, our random forest approach is 

well suited to determining whether firms were revealing their identities in public 

 
49 For additional details on developing screens for collusion in the electricity sector and the use of 
machine learning and data mining techniques, see Brown et al., supra note 10. 
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data as alleged, but less well suited to identifying the price patterns used for this 

purpose. The development of machine learning tools that monitoring or antitrust 

agencies could use to find suspicious patterns in pricing and bidding data is a crucial 

avenue for further research. A potentially fruitful approach may incorporate data 

mining algorithms used for pattern recognition; see for example Mooney and 

Roddick50 and Fournier-Viger et al.51 for recent surveys. Third, our analysis relies on 

standard decision trees and random forest algorithms. Future research could apply 

and compare different ML techniques, such as Gradient Boosting classifiers, which 

are ensemble methods that combine multiple weak learners (usually decision trees) 

to make accurate and robust predictions. Another possibility would be to use deep 

learning models such as Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), which have achieved excellent performance in multiclass 

classification tasks, and can learn more complex patterns and relationships from the 

data.  

  

 
50 Carl H. Mooney & John F. Roddick, Sequential Pattern Mining–Approaches and Algorithms, 45 
COMPUTING SURVEYS, 1-19 (2013). 
51 Philippe Fournier-Viger et al., A Survey of Sequential Pattern Mining, 1 DATA SCIENCE AND 
PATTERN RECOGNITION, 54-77 (2017). 
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VII. Appendices 

 

A. Input Variables and Summary Statistics 

 

 
Table A.1: Variables Used to Recognize Patterns Firms May Have Used to Tag Themselves 

 

 
Table A.2: Summary Statistics of the Input Variables, December 3, 2012—December 31, 2013 
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B. Supplemental Results  

B.1. Random Forest 

 
 

 
 

 
           Figure B.1: Precision and f1-score—Capital Power and TransCanada 
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Figure B.2: ROC curves—Capital Power and TransCanada 

 
 

 
 

Table B.1: Permutation Importance—Capital Power  
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Table B.2: Permutation Importance—TransCanada 
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 B.2. Decision Tree 

 

 

 
         Figure B.3: Precision and f1-score 
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Figure B.4: ROC Curves 
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Table B.3: Permutation Importance—ATCO (May 2013) Using the Decision Tree Classifier 
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