
Getting Beyond the Sandbox: A Playbook for Developing Generative

AI Solutions for Enterprise Applications

Jay Mandal and Dr. Megan Ma

Introduction

Companies are captivated by the potential of generative artificial intelligence (AI) to transform

their businesses, but many don’t know exactly how. Generative AI is defined as artificial

intelligence capable of generating text, images, video or other data using generative models.

Companies in all fields are experimenting in sandbox environments of different ways this

emerging technology can provide value to customers. This urgency is also partly owed to

leadership and market pressures to release new generative AI-driven solutions. The main

questions for companies are asking: (1) where should be the focus; and (2) how do we get

started?

This is a generative AI playbook that provides companies a framework on how to prioritize use

cases and start building. The key elements covered are:

1. Developing solid use cases;

2. Developing a solution and using proprietary data;

3. Which type of generative AI model to use;

4. Risk mitigation to enable enterprise readiness for generative AI; and

5. Optimizing the user-experience (UX); and

6. Conclusion

The focus of this paper will be on generative AI solutions that benefit external customers, and not

solutions that benefit employees and improve internal company processes.

I. Developing Solid Use Cases

The following product discovery process can help a company identify and build generative AI

solutions that provide the most value to their customer base. To start, a company should not rush

to build a generative AI solution in search of a problem. Instead, an enterprise should first

prioritize key customer pain points and then determine where generative AI driven solutions could

best address those key customer problems.

First, focus on the user problem. A company should acquire a deep understanding of problems

for a subset of customers, and then prioritize these problems. In order to do this, a company

should begin with a user problem discovery process. For example, the team would research,

interview, or collect data on a subset of customers that share common characteristics (a user

persona) with the intention of identifying the user persona’s main pain points. A user persona is

important because the team should not just identify broad problems in the space the company

https://news.mit.edu/2023/explained-generative-ai-1109

operates, but identify acute pain points for a subset of customers to determine the true needs of

the market. For example, a user persona could be defined as startups based in technology hubs

like Silicon Valley only at the seed stage or earlier of funding. Following this assessment, the

company would prioritize the user persona’s pain points. For example, the team could assign a

value of high, medium, and low to each of these pains felt by a user persona.

Next, develop generative AI solutions to address top pain points. For one or a couple of the

most pressing pain points of a defined user persona, the team would then brainstorm solutions

incorporating generative AI. The aim would be to significantly improve a pre-existing solution for

the user persona by as much as 10x better in value or cost. Section II will enumerate a few ways

to develop generative AI-driven solutions. As well, Section V will explore how a differentiated

user experience – defined by how a customer navigates the solution – could also provide value

to the user persona.

It is important to assess the necessity of generative AI models in these solutions. If a solution

can be accomplished more efficiently without generative AI, then there is no need to use this

technology. Also, the generative AI models must also be well suited for the task at hand and

technically feasible. For example, a team can rank each solution as high, medium or low (or on

a corresponding 1 to 5 numeric scale) in the categories of: (1) how effectively the solution will

solve the user persona’s problem; and (2) how technically difficult it will be to deliver this overall

solution including generative AI. These two rankings would provide guidance to the team on

which solution(s) would be the best to pursue for their client-base.

Also, it is certainly not a hard and fast rule that the proposed generative AI solution must be as

much as a 10x cost or value improvement for a customer. A company must consider the

stickiness or switching costs of a current solution used by a customer – whether it's their own,

their competitors, or a homegrown solution. For example, if the switching costs from a competitor

are low or the customer has already adopted a prior version of the enterprise’s solution (perhaps

without generative AI), the company only needs to create a slightly better generative AI solution

to win over the customer. This analysis will determine how much better a new generative AI-

driven solution will need to be to displace a customer’s current solution.

II. Developing a Solution and Using Proprietary Training Data

Types of generative AI solutions

A general framework on the different generative AI-driven solutions, organized on the human-

machine collaboration spectrum, is as follows:

1. Co-pilots: that assist human with ongoing tasks, in which a human must initiate prompts

to a model when needed to complete specific tasks

2. Bot with human exception handling (e.g. supervisory AI agents): the AI will handle

simpler tasks independently, and either ask for human intervention to approve how it

handled such a task, or ask for human intervention on more complex tasks, or to handle

exceptional cases.

https://law.stanford.edu/2024/01/25/a-supervisory-ai-agents-approach-to-responsible-use-of-genai-in-the-legal-profession/

3. Autonomous AI agents (e.g. autonomous co-workers): the AI will carry out simple and

complex series of tasks autonomously, without human intervention.

Co-pilots are currently the most commonly created and used solution, next to chatbots. This will

be the focus of this paper on solutions companies should create in the near term and mid-term.

For example, there are co-pilots for software development, sales processes, marketing content,

legal work product, medical diagnosis work, and more. Solutions that fall in category two and

three are more experimental. However, there are developments with generative AI models and

innovations by early-stage startups that are accelerating their commercial viability.

Autonomous generative AI agents is a recently emerging area. For example, Cognition’s product

Devin is an autonomous software engineer released for customer beta testing and for demo

purposes. In its demo, Devin is provided abstract goals and would independently reason on paths

to achieving such goals, including how to complete projects with software-related tasks and

challenges. More product experiments and research are needed in this space to determine how

effectively an agent can take actions to fully complete projects, but these are early symptoms

towards this type of engagement and collaboration between humans and machines.

Prompt engineering and incorporation of proprietary data to customize generative AI

outputs

When developing a generative AI solution like a copilot, a company can simply ask or guide the

user to input specific instructions to direct a generative AI model toward desired outputs

(otherwise known as prompt engineering). Useful guidelines on how to optimize prompt

engineering are provided by the teams developing ChatGPT and Claude. However, simply using

prompt engineering techniques in a generative AI solution to provide desired outputs to a

customer could be easily imitated by a competitor.

Alternatively, a company could create a customer solution with differentiated outputs by

augmenting prompt engineering techniques with unique proprietary data added to query or model.

This could be customer data, a company’s own research database, or other relevant and unique

data, all of which was not originally included in the pre-training for a generative AI model. This

type of solution would create unique outputs – in terms of content and insights, or structure or

style of response – based on the content of the proprietary data. It would also help better curate

responses, mitigating risks like hallucination. Nevertheless, prompt engineering has varied

performance with mitigating against other risks, such as inconsistency and completeness of

responses, nor do they ensure the right safeguards are in place for sensitive data. (See Section

IV for a deeper dive on mitigating risks). In any event, many companies are experimenting with

solutions that draw from their unique data sets.

Here are methods to use proprietary data to customize generative AI solution outputs:

● Context window is the input text that a generative AI model can evaluate for response

generation. For the latest models, the size of the context window has increased so much

https://www.cognition-labs.com/introducing-devin
https://platform.openai.com/docs/guides/prompt-engineering
https://docs.anthropic.com/claude/docs/prompt-engineering

that proprietary data could be included in the prompt context window preceding a query.

For example, the context window of GPT-4 currently ranges from 8,000 to 128,000 tokens.

The largest Gemini 1.5 Pro model (currently under limited release) is up to 1,000,000

tokens. This is the rough equivalent of about 700,000 words (the size of multiple books),

11 hours of audio, or one hour of video. However, as the context window becomes longer,

or as a user needs to provide more context, the generative AI model can begin to forget

this data (see for example results from this evaluation). Furthermore, it can get rather

costly to run the model. In these cases, an alternative solution, retrieval-augmented

generation, may be a better option.

● Retrieval-augmented generation (RAG) is the method by which a model is constrained

to reference data outside the model’s pre-training data, such as a company’s proprietary

database, when asked to respond to a query. In effect, the RAG method is like searching

for the relevant parts of the outside reference data during a prompt engineering query,

and automatically inserting those parts into a prompt alongside the query. RAG is also

less expensive to use than inputting all the data into a context window. Instead, RAG

inserts only the semantically matched data into the context window.

● Fine-tuning a pre-existing model, in which a model is further pre-trained on additional

specific proprietary or non-proprietary customer data. Prompt engineering queries on a

fine-tuned model automatically result in outputs that are unique in terms of content, style,

or even structure of answers based on the way it was fine-tuned.

● Pre-train a model from scratch with your own data. Specifically, a new model could be

created by pre-training it with proprietary data and other specifically earmarked data

relevant to customer use cases. This model would be a purpose-built solution to provide

responses based on the newly trained data. However, this is the option of last choice as

it is often prohibitively expensive (reaching up to the tens of millions of dollars to create a

robust model) and time-consuming for a team to pre-train and create this new model.

Data readiness and paths to get to market?

Data readiness for proprietary data is often a major bottleneck that impacts a company’s ability to

leverage generative AI solutions. When dealing with unstructured text (such as text-based long

form content), such data can more easily be preprocessed by your company’s engineering team

and then ingested for use by a generative AI model based on the methods above. However, it is

more complex if the proprietary data is in the form of various structured databases (such as in

table form) disseminated across multiple formats and housed in different centers across a

company. Before a model can use this data across various structured databases, the company’s

engineering, artificial intelligence/machine learning (AI/ML), and data science teams would need

to (1) create a semantic layer which translates all such data in a way a generative AI model could

use it, and which recognizes and reconciles any underlying redundancies, discrepancies or other

ambiguities in the data, and (2) if needed, further prepare and cleanse the data before it can be

properly understood by this semantic layer. This may be a time-consuming and involved process

for a company’s engineering, AI/ML, and data science teams to prepare and organize accordingly.

https://github.com/gkamradt/LLMTest_NeedleInAHaystack

How to quickly get to market with unique data sets based on readiness.

A company could focus on quick wins by determining use cases that only require training their

models on readily available subsets of proprietary data (structured or unstructured). While this

may be a much smaller subset of the data a company would like to use, it allows the product to

arrive in the hands of customers for use, feedback, and quick iterations, enabling client retention.

This data could be used in models with context windows, RAG or even fine-tuning methods to

provide customers unique value-add outputs.

A mid-term strategy would be for the company to create a more robust generative AI solution by

augmenting it with a much more complete dataset of the disaggregated structured and

unstructured data, using the methods mentioned above. A company could also create a more

data-centric culture within the company in order to collect more robust and complete data sets to

use with these models. This new culture could include requiring current and future products to

collect more data (content, text, audio, etc.), transferring data in a more central repository, and

maybe even centralizing the prioritization and support process for development of generative AI

solutions by a company.

III. Which Type of Generative AI model to Use

When developing a new generative AI solution, a decision facing companies is whether to use:

(1) proprietary models (GPT, Claude, Gemini, etc.) or (2) open source models (such as from

Llama, Mistral, DBRX, etc.).

The benefits of using a proprietary model are that they are well-suited for general purpose use,

as they rely on large, robust models that are highly performant in a wide array of fields. Each of

these proprietary model companies also offer smaller models, which are less expensive to use,

have lower latency, and are sufficient for more narrowly specified tasks. It’s also easier for a

company to use proprietary models since they are easier to deploy “out of the box” for a

company’s solutions. The pricing structure is also reasonable, especially considering their

infrastructure encourages a plug-and-play approach. The models themselves are also incredibly

capable without much customization. However, there may be vendor lock-in and data privacy

concerns about using proprietary data in such models.

The benefit of using open-source generative AI models is that a company has greater flexibility,

including full control of the usage, customization, and hosting of the model. There are relatively

limited data and privacy concerns with a company’s proprietary data as the model, underlying

data, and its usage (in context windows, RAG, fine-tuning, or other methods as described above)

can be housed as a local instance on enterprise devices. In effect, the data would not leave the

company ecosystem. The downside is that it is more time-consuming and costly upfront to set up

the model if used in a custom manner.

An approach which companies are adopting is to first experiment with a solution on a premier

proprietary model (such as ChatGPT, Claude, Gemini). Once a solid use case is identified,

experiment with that same solution on other open source models, or other proprietary generative

AI models to optimize for other factors such as price, performance, ease-of-use – so long as

data/privacy concerns with underlying data are mitigated. Eventually, the enterprise may migrate

the solution to an open source model to have complete control of the underlying model, data, form

factor, etc. for the reasons mentioned above. In the very rare case, a company may choose to

pre-train their own LLM with proprietary data and even hand-picked public data. However, this

last approach may be prohibitively expensive, more time-consuming, and technically more

demanding.

IV. Risk Mitigation to Enable Enterprise Readiness for Generative AI

Companies have lower risk appetites in the use of generative AI, in light of their known limitations.

These include hallucinations, inconsistencies in response, and most recently, completeness.

Contractual and regulatory compliance is another key consideration. These limitations need to

be addressed before a model transitions from experimental and exploratory (sandboxing) to

production-ready application.

In order to ensure enterprise preparedness, that generative AI tools perform the tasks envisioned

for their purpose, risk mitigating measures must be taken at every stage of the development cycle.

This means that both defensive and preventative methods must be taken. We consider first

defensive techniques, specifically through the lens of security. This includes red-teaming, and the

use of adversarial attacks, such as prompt injections, to help identify relevant areas of vulnerability

in the existing use of the application. Red-teaming is a common method of intentionally crash-

testing generative AI models and has been touted as a form of AI auditing.

Once vulnerabilities (known risks) have been better identified, it may be important to understand

how to curtail outputs of the model, such that they are consistent with the expectations of relevant

stakeholders. There are a few options that may be helpful in this space.

Guardrails are a set of machine-learning models or rules used to validate the output of the large

language model (LLM). They detect whether there is the presence of a specific type of risk.

Guardrails AI, for example, is a Python library that allows users to add structure, type, and quality

guarantees to the outputs of generative AI models. This means that users may specify and

validate how a generative AI model should behave and take remedial action when the model

behaves outside of these predetermined rules. This includes, for example, preventing security

vulnerabilities by verifying that responses do not contain trade secrets and/or personal identifiable

information (PII).

GAI plays a vital role in facilitating conversations among stakeholders and establishing realistic

expectations for our problem-solving process. This approach involves actively engaging

stakeholders in defining and implementing appropriate safeguards to mitigate potential harms

caused by generative AI model applications. Furthermore, GAI recently released Guardrails Hub,

https://www.ibm.com/blog/red-teaming-101-what-is-red-teaming/
https://arxiv.org/abs/2307.15043
https://www.dlapiper.com/de-AT/insights/publications/2023/10/red-teaming-a-practical-guide-to-testing-ai-models
https://www.guardrailsai.com/docs
https://www.guardrailsai.com/docs/hub/introduction

a repository that is open-source and available to ensure against stakeholder-specific risk at the

enterprise level.

Similarly, NeMo Guardrails, an open-source LLM security toolset released by NVIDIA, offers a

broader set of programmable guardrails to control and guide LLM inputs and outputs. These

include content moderation, topic guidance, which steers conversations towards specific topics,

hallucination prevention, and reduces the generation of factually incorrect or nonsensical content,

and response shaping.

Equally, LlamaGuard offers a viable solution to address the generative AI model input-output

vulnerabilities and combat prompt injection. LlamaGuard is effectively an LLM, fine-tuned from

Llama-2, that generates text determining whether an input (prompt) or output (response) is

deemed safe. It is defined on a taxonomy of six unsafe categories, and developers can have the

option of customizing those categories by adding additional unsafe ones to tailor to their specific

use cases.

An important step involved in deployment requires processes that enable the continuous

monitoring and evaluation of generative AI performance. This applies to both proprietary “out-of-

box” models as well as for customized and/or open-source models that have been fine-tuned with

enterprise’s proprietary data.

Arize Phoenix, another open-source Python library, helps evaluate generative AI model

responses and catches issues once an application is deployed in production. That is, Phoenix

allows for LLM observability, defined as having total visibility into every layer of an LLM-based

software system: the application, the LLM prompt and the LLM response. In effect, Phoenix can

visualize datasets and troubleshoot common issues of generative AI like hallucination, relevance

and accuracy of responses, quality of summarization, and more.

Together, these toolkits behave as tangible, forensic safeguards that provide more behavioral

certainty on ways to effectuate enterprise readiness for production-level deployment of generative

AI tools.

A final consideration to address are legal and policy guidelines that work in tandem with

aforementioned technical interventions. For example, if the use of the proprietary data includes

sensitive customer information, certain clients may have contractual limitations as to the extent to

which their data could be used in relation to frontier technologies such as generative AI solutions.

Furthermore, there are evolving federal and state regulations with respect to a company’s usage

of customer data and data privacy, such as with PII (i.e., GDPR). A company should involve a

legal team to collaborate on considerations with usage of data, and to navigate emerging areas

of regulatory compliance on the usage of generative AI models.

V. Optimizing the User Experience (UX)

https://github.com/NVIDIA/NeMo-Guardrails
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://github.com/Arize-ai/phoenix?tab=readme-ov-file
https://gdpr-info.eu/

Investment in generative AI user experience has been comparatively minimal in comparison to

investment in the generative AI technologies (training, inference, mitigating risk,

tools/infrastructure, etc.). User experience (UX) may be defined as how easily a user can navigate

a product and find what they need. The UX for generative AI models have not moved much

further beyond text-based chat bots. Companies need to think carefully about the UX of their

generative AI solutions to ensure that customers can best avail the benefits of these technologies.

There are currently major developments for generative AI models in the following areas that

require a rethinking of the UX in order to best deliver these solutions to customers:

1) Multimodal capabilities – using not only text, but voice, vision, sensory inputs and other

media, as both inputs and outputs

2) Integration of generative AI models – through APIs or homegrown models – into different

steps of an enterprise workflow for customers

3) No code/low code approaches to create and use generative AI models in different

subject areas (such as Open AI’s GPTs, which can be created by users without technical

skill sets, or Rivet from Ironclad)

4) Development of agentic generative AI solutions, which autonomously complete entire

series of tasks without human intervention

One area of consideration is voice-based inputs and outputs for a model, which are now being

offered in many generative AI models. A client may find it better to interact with a company’s

model by voice dialogue, instead of text-based interaction. Additionally, a company could

contemplate a simplified voice-based model instruction interface to guide a model. This would be

in place of complex prompt engineering techniques currently being used to optimize outputs from

a model. The user could converse with the model in natural language and in the process the

model would capture enough relevant instruction to achieve the user’s intended outputs. For

example, a voice AI that would act as a customer service chatbot that you could converse with in

order to solve a product issue (e.g. Vapi).

In our recent paper “Redefining UX Design for Generative AI Models for Enterprise,” we identify

and explore future user experience paradigms we expect to be offered in models in the near

future.

Companies can follow UX research and design thinking methodologies to determine the best

UX delivery mechanisms to customers. Some key steps to consider in this UX discovery

process would be:

1) Assess customer needs through user interviews with both existing clients and relevant

stakeholders;

2) Explore and create designs of the solution (without the underlying technology) that meet

those needs;

3) Test those designs and the workflow with a customer;

https://openai.com/blog/introducing-gpts
https://rivet.ironcladapp.com/
https://vapi.ai/
https://law.stanford.edu/2023/11/16/redefining-ux-design-for-generative-ai-models-in-enterprise/

4) Capture feedback through pilot testing; and

5) Continuous iteration on UX designs before transitioning from prototype to product.

The Stanford D. School and others offer more detailed examples of UX design methodology that

companies can follow.

VI. Conclusion

This playbook lays out a practical framework for enterprises to follow as they move from

experimentation to production-ready generative AI solutions. A company’s leader(s) in this space

should be well-versed on the key steps provided in this playbook. This will help them develop a

plan to smoothly orchestrate the development and deployment of production-level solutions in

coordination with key stakeholders within and outside the company (such as product, engineering,

AI/ML engineering, UX team, legal, sales/marketing, outside generative AI model/tools/support

companies, and customers). Future questions to explore are:

1) Which verticals are best positioned to make the transition now to developing production-

ready solutions?

2) Which emergent technologies in generative AI are poised to be future areas of emphasis

in enterprise solutions? Could they be generative AI agentic frameworks, unique UX

delivery mechanisms, or something else?

https://uxguide.stanford.edu/types-ux/ux-design

	Getting Beyond the Sandbox: A Playbook for Developing Generative AI Solutions for Enterprise Applications
	I. Developing Solid Use Cases
	II. Developing a Solution and Using Proprietary Training Data
	III. Which Type of Generative AI model to Use
	IV. Risk Mitigation to Enable Enterprise Readiness for Generative AI
	V. Optimizing the User Experience (UX)
	VI. Conclusion

