July 1, 2013

Jessica Bede
Climate Change Program Evaluation Branch
Stationary Source Division
California Air Resources Board
1001 I Street
Sacramento, CA 95814

Mine Methane Capture
Compliance Offset Protocol

Dear Ms. Bede:

We respectfully submit these comments to the California Air Resources Board (the “Board”) regarding the proposed Mine Methane Capture (MMC) Compliance Offset Protocol (the “Protocol”). We appreciate the opportunity to share our perspective in the informal Expert Technical Working Group process as the Board develops the draft Protocol in the coming months, and we thank the Board for engaging in a transparent process seeking input and expertise from a broad range of stakeholders. It is our intention to remain engaged in this process in order to assist the Board in developing a protocol that is technically, legally, and environmentally sound.

Based on our analysis of issues relating to the Protocol’s relationship to existing laws, leakage risks, and additionality threshold criteria, we offer the following recommendations:

1. **If the Board sets eligibility thresholds for pipeline injection projects, the Board should also set eligibility thresholds for all other types of methane destruction projects that are at least as stringent as those for pipeline injection in order to avoid crediting non-additional activities and to avoid creating incentives to waste natural resources.**

2. **The Board should take proactive steps to prevent the Protocol from interfering with States’ implementation of the Clean Air Act’s New Source Review process and to avoid potential offset credit invalidations that may result from this interference.**

3. **The Board should examine and monitor the potential for emissions leakage resulting from increases in the profitability of coal mining due to revenues from offset credits under the Protocol.**

Attached to this letter, we provide three appendices that address issues related to the design of an MMC protocol. In Appendix A, we make recommendations regarding the Board’s consideration of eligibility thresholds for pipeline injection and other project types at active underground mines. In Appendix B, we provide suggestions aimed at minimizing negative
impacts of the protocol on the Clean Air Act’s Prevention of Significant Deterioration (“PSD”) permitting process for large emitters of greenhouse gases. In Appendix C, we examine the effect of offsets revenues on coal mining profits and the resultant potential for leakage emissions. These comments update and incorporate by reference, as applicable to the Board’s planned Protocol, comments the Stanford Environmental Law Clinic previously submitted to the Climate Action Reserve (“CAR”) regarding its Coal Mine Methane Project Protocol Version 2.0. We have included those comments here as Appendix D.

In Appendix A, we assess the use of thresholds for determining the eligibility of pipeline injection projects. The Board has discussed the possible use of eligibility thresholds for pipeline injection, but not for other project types that use drainage-mine methane. We urge the Board to set eligibility thresholds for all project types in order to avoid crediting non-additional activities. For example, if no eligibility threshold is set for flaring projects, but pipeline injection eligibility is restricted based on a threshold, then the activity of flaring drainage-well gas which exceeds the threshold could be (1) eligible for credits, but (2) non-additional. Flaring such gas would be non-additional because the gas could be profitably sold into a pipeline in the absence of any offset credits. Furthermore, crediting this non-additional activity would quite likely occur under plausible pricing scenarios. At today’s natural gas prices (around $3.50 per MMBTU) and at a carbon offsets price of $15 per tCO$_2$e, destroying methane by flaring could generate more income for the mine than selling methane into a pipeline, inducing mine operators to opt for flaring rather than pipeline injection. So as not to incentivize mine owners to flare methane that they otherwise would have sold through the natural gas pipeline system, it is critical that eligibility thresholds be set for all types of projects that destroy drainage well methane at levels at least as stringent as those for pipeline injection. While the Board’s Protocol could exclude flaring from eligibility at mines (or wells) where injection is already occurring, our concern lies in the financial incentives presented to a mine owner upon mine expansion, the drilling of new gob wells, or the development of a new underground mine.

Appendix B demonstrates that offsets revenues for MMC projects can substantially improve the profits of companies engaged in underground coal mining. At carbon offset prices as low as $10 per tonne of carbon dioxide equivalent (tCO$_2$e), offset revenues can increase the profits of an underground coal mine with an average profit margin and level of gassiness by approximately 13%, and can increase mine profits by over 50% at the gassiest mines and at mines with relatively low profit margins. An offset price of $50/tCO$_2$e would lead to an increase in profits of an average coal mine by around 66%, while more than doubling the profits of the most gassy mines and at mines with relatively low profit margins. We encourage the Board to perform its own examination of the possible leakage emissions that could be induced by the Protocol and to monitor this risk as energy prices and conditions change, methane capture technologies improve, and offsets prices increase. The leakage risk created from increasing mine profits means that the conservative choice of project eligibility criteria to prevent any non-additional projects from participating are especially crucial for this protocol.

Appendix C identifies two types of legal risks associated with the Protocol’s relationship to the Clean Air Act. First, the existence of the Protocol creates an incentive for state permitting authorities to establish weaker standards for required Best Available Control Technology (“BACT”) to control greenhouse gas emissions when they issue PSD permits for new mines or
major modifications (expansions) of existing mines. In addition to directly compromising the implementation of the Clean Air Act and crediting projects that may otherwise have been legally required, the effects of these incentives may extend further if weakened control standards are applied to mines that do not implement offset projects. Second, if BACT determinations are made after offsets credits have been generated, there is a risk that those credits will be invalidated by a BACT determination that covers all or part of the technology implemented by the offsets project, triggering buyer liability. This, in turn, may trigger a wave of lawsuits among parties to the offsets transaction. In order to proactively avoid conflicts with the Clean Air Act and any resultant non-additional crediting or invalidation of credits, we recommend that the Board adopt scheduled updating procedures for MMC baselines, and that it exclude new or expanding mines from crediting. If the Board rejects this suggestion and elects to credit projects at these sites, it should, at minimum, authorize these projects only after any required PSD permitting process is complete and should set different, more conservative eligibility criteria for new and expanding mines to avoid influencing BACT determinations.

In addition to the issues detailed in the appendices to this letter, we believe that the Board should consider other potentially important legal and technical issues in future discussions. For example, we note that Colorado Senate Bill 252, signed into law by Colorado Governor John Hickenlooper earlier this month, makes the capture and destruction of coal mine methane from active and inactive underground mines in Colorado eligible for consideration as a form of renewable energy under that State’s Renewable Energy Standard. It is our understanding that under the additionality requirements of AB 32, the inclusion of mine methane capture in Colorado’s renewable energy standard should preclude all Colorado-based mine methane projects from qualifying for compliance-grade offsets in California’s market. Although the most obvious additionality problem arises with electricity projects that qualify under Colorado’s renewable energy standard, the problem is significantly broader. Eligibility restrictions must apply to all project types because of the increased likelihood that drainage methane would be put to use in Colorado in the absence of a California offset protocol, and therefore its capture and use is even less likely to be additional. Further, if the Protocol were to allow for other project types to be credited (i.e., flaring, pipeline injection) but not electricity generation, California’s offsets program could cause methane to be flared that otherwise would have been put to productive use generating electricity. This would happen if the profits generated from selling offsets from flaring exceeds the profits that would be generated by producing electricity without offsets revenues. This effect is discussed in detail in Appendix A with regard to pipeline injection. In order to avoid any ambiguity, we urge the Board to explicitly consider the implications of including mine methane under state-level renewable energy standards or renewable portfolio standards on the additionality of mine methane capture projects in such states.

In conclusion, we emphasize that the risks associated with an MMC Protocol go beyond crediting non-additional projects and over-estimating reductions from individual projects. The potential for an MMC Protocol to cause a weakening of BACT standards, to incentivize flaring over productive methane use, and to increase profits from coal mining could lead to an increase in emissions substantially greater than the credits generated. Our analyses find that these effects

1 The bill’s title is “An Act Concerning Measures to Increase Colorado’s Renewable Energy Standard so as to Encourage the Deployment of Methane Capture Technologies.”
may be substantial. The Board should take affirmative steps to avoid these effects in the design of the Protocol, through applying conservative project eligibility criteria, developing safeguards against conflicts with the Clean Air Act, and monitoring these effects as technologies and conditions change over time.

While additionality is a statutory requirement under AB 32 for all offsets protocols, setting conservative criteria that avoids any non-additional crediting is especially crucial for a Mine Methane Capture protocol. The particular challenges of this Protocol—including the large sizes of individual offset projects, as well the complex interactions with federal law—recommend a heightened focus on setting robust standards. We therefore support the Board in its endeavor to develop conservative eligibility criteria that avoid crediting any non-additional pipeline injection projects. An equal level of rigor and conservativeness must also be applied to all project types covered under this Protocol.

We appreciate the opportunity to work with the Board as it develops this Protocol in the informal Expert Technical Working Group, and we look forward to our further discussions as the Protocol moves in to the formal regulatory process in the coming months.

Sincerely yours,

Barbara Haya, Research Fellow
Stanford Law School
bhaya@law.stanford.edu

Danny Cullenward, J.D.
Ph.D. Candidate (E-IPER)
Stanford University

Aaron Strong, Ph.D. Student
Environment & Resources (E-IPER)
Stanford University
alstrong@stanford.edu

Michael Wara
Associate Professor
Stanford Law School

David Weiskopf, J.D. and M.S. (E-IPER)
Stanford University
davidjweiskopf@gmail.com

Deborah Sivas
Luke W. Cole Professor of Environmental Law
Stanford Law School

Cc: Greg Mayeur, Manager, Program Operations Section, California Air Resources Board, gmayeur@arb.ca.gov
APPENDIX A

Project Eligibility Thresholds

At the second meeting of the Potential MMC Compliance Offset Protocol Expert Technical Working Group (hereafter, “the Working Group”) on May 21, 2013, the Working Group discussed the potential use of thresholds for determining the eligibility of pipeline injection projects for offset crediting from mines with drainage systems. These thresholds were based on the goal of ensuring that non-additional projects are not eligible to generate offset credits.

While the Working Group’s discussion was limited to thresholds for the eligibility of pipeline injection projects, we believe that the Board must consider the potential interaction of thresholds across multiple project types. Setting eligibility thresholds in a piecemeal manner for only a subset of project types is likely to generate non-additional credits.

We offer the following recommendations, which are each explained in detail below:

- **If the Board develops thresholds for eligibility of pipeline injection projects in its draft Protocol, then the Board should also develop eligibility thresholds that are at least as stringent for all other project types that destroy methane from drainage wells in order to avoid crediting non-additional projects.** Based on our analysis, we believe that such thresholds are necessary for the Protocol to meet the requirement under AB 32 that offsets credits be additional.

- **We urge the Board to consider defining eligibility thresholds for flaring of mine methane that are more strict than for productive uses of the methane (e.g., pipeline injection, on-site consumption) when those productive uses are economically feasible with carbon credits.**

We support the Board in its endeavor to develop eligibility thresholds for pipeline injection that seek to ensure, to a very high level of confidence, that no non-additional mine methane capture projects will be eligible to generate offsets credits under the Protocol. Though our analysis here responds to a discussion about eligibility thresholds for pipeline injection, we encourage the Board to apply similar analyses of the risk of crediting non-additional credits as the Board considers the eligibility of other project types that may be covered under this Protocol, including all methane destruction from active underground mine venting, and methane destruction projects at abandoned underground mines, and surface mines.

1 Other project types include flaring, other on-site destructive uses such as electricity generation, transportation fuel, heating fuel, thermal drying, or off-site destructive uses which do not involve sale into a natural gas pipeline network for distribution, such as the sale of methane for use as fuel at a nearby off-site facility.
1. **In order to avoid crediting non-additional projects, the Board should set eligibility thresholds that are at least as stringent as those set for pipeline injection for all other project types that use drainage-well methane.**

At its May 21 meeting, the Working Group discussed previously assessed criteria for setting eligibility thresholds for pipeline injection. These options included differentiating by mining method, methane liberation rate, well source, gas composition (percentage methane), gas quality (concentration of contaminants in gas), well-life, and distance from pipeline. Much of our discussion centered on setting thresholds using gas composition metrics (i.e., the percentage of methane).

It is our understanding that the rationale for using eligibility thresholds for pipeline injection is to avoid crediting non-additional projects. Pipeline injection of methane is common practice at mines with drainage systems; a majority of mines with drainage systems currently inject methane into pipelines.\(^2\) The threshold would thus be designed to establish eligibility for pipeline injection for a set of specific mine, well, or gas circumstances where injection *would not occur in the absence of the offset credit*, and thus, pipeline injection could be considered additional if the threshold criteria were met.

At its May 21st Working Group meeting, the Board did not discuss the application of eligibility thresholds for other methods of destroying methane, including flaring, or uses such as electricity generation and on-site heating. While pipeline injection of drained methane is common practice at a majority of mines with drainage systems in the United States, flaring is not currently in common practice,\(^3\) nor are other uses of methane from drainage wells.\(^4\) Since the rationale for the use of eligibility thresholds for pipeline injection is to assure that only additional projects are eligible for credits, it might seem straightforward to conclude that eligibility thresholds do not need to be applied to flaring or other destructive use project types. Because these activities are not currently common practice and are not economically profitable for most mines in the absence of offset credits, it could be assumed that these uses would be additional for any gas quality, well type, or other criteria, and thus there would be no reason to apply thresholds. However, *not setting thresholds for flaring and other destructive use projects strongly risks crediting non-additional projects*. The reason for this relates to the financial

\(^2\) In its analysis of gassy mines with drainage systems, the EPA found that as of 2006, 12 of 23 mines with drainage systems injected the majority of their mine methane into pipelines, and an additional four mines used at least some portion of their mine methane. Data from: EPA. 2009. Identifying Opportunities for Methane Recovery at U.S. Coal Mines: Profiles of Selected Gassy Underground Coal Mines 2002-2006. EPA 430-K-04-003.

incentives presented to a project developer by the circumstance in which a threshold is applied only to pipeline injection project eligibility.

Consider the following example. If the Board were to develop an eligibility threshold for pipeline injection which requires that mine gas must be less than 80% methane to be eligible for pipeline injection (because it is presumed that lower quality gas would not be sold into a pipeline without the added financial benefit from offsets sales), and if no threshold were applied for flaring projects (because it is assumed that flaring would not otherwise occur in the absence of the offset credit), then mine methane sources with 80% methane or greater would be eligible only for flaring projects. However, in this example, the pipeline injection eligibility threshold presumes that injecting gas of this quality or greater can be profitable without the offset credit. Flaring drainage-well gas could therefore be (1) eligible for crediting, but (2) non-additional. This would also be true for credited on-site use projects that destroy methane that exceeds the threshold: such projects would generate credits for the destruction of methane that would likely have occurred in the absence of the Protocol. As the example above illustrates, the Board risks crediting non-additional projects if it does not promulgate eligibility thresholds for all project types, including flaring and other on-site destructive uses.

In the scenario described above, we have shown that there is a risk of crediting non-additional projects in the absence of thresholds for projects other than pipeline injection. Below we show that the risk is strong, due to the financial incentives that a project developer would face. Whether a project developer would opt to profitably inject the greater-than-80% methane content gas or would opt to flare it would depend on the relative value of the profits received from offset credits that would be received for the flaring project and the value of the profits received from selling the gas into a pipeline.

In comments previously submitted to the Climate Action Reserve (“CAR”) regarding its Coal Mine Methane Project Protocol, members of our team provided an analysis of the relative revenues from natural gas sales to pipelines and the generation of offset credits in the context of CAR’s Protocol’s eligibility rules for drained methane, which permitted flaring but prohibited pipeline injection. Under plausible pricing scenarios for both offset credits and natural gas, project developers will expect greater economic returns from flaring methane for offset credits than they would for selling the same methane as natural gas on the wholesale market (see Figure 1). At a carbon price of $15/tCO₂e and at natural gas prices up to $4.50/mmbtu or less (for comparison, as of December 2012 natural gas wellhead prices were around $3.35/mmbtu), a project developer would opt to flare rather than profitably inject mine methane.

5 We use this number as a simple illustrative example only, not as an intended suggestion of a threshold value, nor as a recommendation of gas-quality metric based thresholds. The analysis below would apply to any or all thresholds.
6 Please see Appendix D.
7 Energy Information Administration, Natural Gas Prices, available at http://www.eia.gov/dnav/ng/ng_pri_sum_deu_nus_m.htm. As of this writing, the most recent data for wellhead natural gas prices are from December 2012. Notably for our analysis, natural gas wellhead prices have remained under $4.50/mmbtu since January 2011.
Figure 1: Economic Value of Carbon Offsets Compared to Sale of Natural Gas

<table>
<thead>
<tr>
<th>Natural gas price ($/mmBTU)</th>
<th>Value of carbon offsets</th>
<th>CO2 price ($/tCO2-eq.)</th>
<th>Value of natural gas sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>($40.58)</td>
<td>$144.92</td>
<td>$324.42</td>
</tr>
<tr>
<td>3.5</td>
<td>($93.31)</td>
<td>$89.19</td>
<td>$271.69</td>
</tr>
<tr>
<td>4.5</td>
<td>($146.05)</td>
<td>$36.45</td>
<td>$218.95</td>
</tr>
<tr>
<td>5.5</td>
<td>($198.78)</td>
<td>($15.28)</td>
<td>$166.22</td>
</tr>
<tr>
<td>6.5</td>
<td>($251.51)</td>
<td>($69.01)</td>
<td>$113.49</td>
</tr>
<tr>
<td>7.5</td>
<td>($304.24)</td>
<td>($121.74)</td>
<td>$60.76</td>
</tr>
</tbody>
</table>

Each cell in the main table of Figure 1 shows the difference between the value of the carbon offset derived from flaring methane and the value of selling that methane into a pipeline, for a range of natural gas prices and offset prices, per metric ton of CO$_2$e. Positive numbers are highlighted and indicate that for the prices applicable in that cell, the carbon offset is more valuable than the direct sale of methane. Thus, under these conditions, a project developer will prefer to generate offset credits rather than sell captured methane into the pipeline network.\(^8\)

In response to our earlier comments, CAR indicated that any project that has already been injecting into a pipeline would not be eligible for credits if it switched to flaring. The Board’s Protocol could similarly exclude flaring from eligibility at mines (or wells) where injection is already occurring. This response has the effect of eliminating some, but not all risk. *We emphasize that our concern is more general and applies equally to the financial incentives presented to a mine owner upon mine expansion, the development of a new underground mine, or the drilling of new gob wells to drain methane from an active mining face.*

The fundamental problem is that an offset project developer that is eligible to receive offset credits for flaring drainage-well methane when pipeline injection is economically feasible but is not an eligible project type, will preferentially select flaring. This is because the value of the carbon offset is likely to be greater than the market value of natural gas (see Figure 1). If the Board were to set piecemeal eligibility thresholds for pipeline injection only, but not for flaring, the Board would create an incentive to flare gas that otherwise would have been injected into a pipeline, thus generating non-additional credits. We urge the Board to establish eligibility thresholds for flaring and other methane use projects that are at least as stringent as those established for pipeline injection.

We recognize that applying conservative eligibility criteria to flaring may miss opportunities to reduce emissions cost effectively through flaring mine methane. However, from

\(^8\) The Table in Figure 1 and its description are copied from the previous comment letter submitted to the Climate Action Reserve. The full comment letter is included as Appendix D.
the perspective of achieving California's emissions target, we view the risks associated with inducing the flaring of methane that would otherwise have been injected into a pipeline as far greater. As a compliance-grade offsets program, the credits generated must meet AB 32’s requirement that all offset credits are additional. Thus, to avoid the strong risk of crediting non-additional activities outlined above, we urge the Board to adopt eligibility thresholds for all project types that use drainage well methane.

2. The Board should consider defining eligibility thresholds for flaring of mine methane that are more strict than for productive uses of the methane (e.g., pipeline injection, on-site consumption) when those productive uses are both additional and economically feasible with carbon credits to avoid incentivizing the unproductive use of this gas.

In Section 1, we urge the Board to set eligibility thresholds for flaring and on-site destructive use projects that are as least as stringent as those set for pipeline injection projects, in order to meet the statutory requirements of AB 32 that it avoid generating non-additional credits. In Section 2, we present an observation that refines our recommendation in Section 1. Setting identical eligibility threshold levels for flaring, other on-site destructive uses, and pipeline injection would address our primary concerns regarding crediting non-additional projects. However, the incentives resulting from setting such identical thresholds for all project types could still incentivize the flaring of methane that would otherwise have been put to productive use in the economy. Specifically, we note that such a Protocol could incentivize non-productive uses of methane (i.e., flaring) when productive uses (e.g., pipeline injection, electricity generation, vehicle gas) remain economically feasible with offset credits.

The decision to flare or to inject drainage methane that would otherwise have been vented would be determined by the relative profits from pipeline injection and flaring because the mine would receive offset credits from either project type. In order to build a pipeline project, the mine would have to construct pipeline infrastructure and potentially upgrade the quality of the gas by removing nitrogen or other contaminants. In contrast, flaring would likely require fewer up-front costs, but would not generate revenues from natural gas sales. When revenues generated from the sale of the gas into the pipeline do not make-up for the difference in relative costs of the two project types, under circumstances where identical thresholds are applied to injection and flaring projects, the project developer would prefer to flare the methane. This would be the case even if the operator could profitably inject the same natural resource into a pipeline network with offsets credits.

While there is no legal requirement for a Protocol to avoid creating such incentives under AB 32, as both project types would be additional in the above example, we bring this issue to the Board’s attention because we believe that the Board may wish to draft a Protocol that avoids incentivizing the flaring of methane that could otherwise be put to productive use in the economy, for two reasons. First, the productive use of this methane would displace an equivalent amount of methane that would otherwise be consumed elsewhere within the pipeline, and thus the productive use would avoid emissions elsewhere in the economy. Secondly, setting thresholds so as not to incentivize flaring when productive-uses are feasible avoids having the Protocol encourage an activity which may be perceived as the waste of a valuable natural
resource. For these reasons, we urge the Board to consider setting more stringent thresholds for flaring projects than for productive-use projects.

3. **Recommendations**

 Based on our analysis, we recommend that, in order to minimize the risk of crediting non-additional emissions reductions, the Board should:

 - Set eligibility thresholds for all projects types that use drainage-well methane (e.g., pipeline injection, flaring, electricity generation, and other on-site uses);
 - Set eligibility thresholds for flaring and other destructive uses that are at least as stringent as the eligibility thresholds set for pipeline injection.

Further, we recommend that, in order to avoid incentivizing the flaring of methane that might otherwise have been put to productive use, the Board should:

 - Set eligibility thresholds so that flaring projects are only eligible when productive uses (e.g., pipeline injection, on-site consumption) are unlikely to be effectively supported by offsets credits.

Finally, as also discussed in Appendix B, which addresses the need to regularly revisit the Protocol’s approach to eligibility, given the evolution of regulation of mine methane emissions under the Clean Air Act, we urge the Board to consider establishing a timeline schedule for regularly revisiting eligibility threshold criteria for pipeline injection and other project types which destroy drainage-well methane. Given the relatively quick pace at which methane capture technologies are developing, revisiting thresholds criteria according a schedule established in the Protocol would help ensure that, in practice, eligibility thresholds are not inducing the crediting of non-additional projects.
APPENDIX B

Legal and Policy Interactions Between the MMC Protocol and the Clean Air Act’s
New Source Review Program for Greenhouse Gases

Two types of legal risk exist if the Protocol creates eligibility for projects at new mines or
projects associated with mine expansions that increase emissions by 75,000 metric tons of carbon
dioxide equivalent per year. First, the existence of the Protocol creates a perverse incentive for
state permitting agencies to establish weaker standards than they otherwise might for required
Best Available Control Technology (“BACT”) to control emissions when the states issue
Prevention of Significant Deterioration (“PSD”) permits for new mines or major modifications of
existing mines. In addition to potentially compromising the implementation of the Clean Air Act
and risking crediting activities that would have occurred in the absence of the Protocol, this
incentive could also further undermine the climate benefits of the Protocol if these same
weakened permitting standards are applied to mines that do not implement offset projects.

Second, there is a risk that some BACT determinations could invalidate offset credits if
the Board is not careful to credit only projects that have already fully complied with all New
Source Review (“NSR”) requirements. Many coal mines will be subject to the NSR permitting
process upon expansion or when newly constructed. Mines that opened or made major
modifications since 2011 may already be required to apply for PSD permits because of their
greenhouse gas emissions (“GHG”), but none have yet gone through the application process.¹
Further, no state has yet defined GHG BACT for any such permit. There is, therefore, a risk that
offsets may be invalidated if projects are certified for offsets before legally required BACT
determinations have been made. For example, a BACT determination requiring methane
mitigation measures for mines that are also generating offsets credits may, in some cases,
invalidate those credits. But invalidation is no simple matter. Either litigation or individual mine
regulation decisions could cause the invalidation of credits, but both of these processes can span
months or years. In turn, invalidation and the resultant buyer liability may result in expensive
and complex litigation for participants in the offsets transaction, including the Board.

Given these risks, the Board should take particular care to address any such potential
conflicts now, at the outset of the development of the protocols. The Board’s response to these
risks should take a proactive approach above and beyond the level of concern expressed in the
Climate Action Reserve draft protocol. We recommend here two measures that can help to
mitigate these risks. First, the Board should include in the Protocol a schedule of time or event-
based thresholds that will trigger a re-assessment of protocol baseline conditions. These periodic
reassessments will allow for recalibration of the Protocol in response to BACT determinations.
Second, the Board should consider excluding new mines and expanding mines engaged in major
modifications from eligibility for offsets credits. This approach would eliminate the risk of
conflict between offsets generated under the Protocol and Clean Air Act BACT requirements.

¹ Each PSD permit requires a BACT determination. The U.S. Environmental Protection Agency, Clean Air
Technology Center - RACT/BACT/LAER Clearinghouse, does not list any greenhouse gas BACT
determinations for coal mines. See http://cfpub.epa.gov/rblc/index.cfm?action=Search.BasicSearch&lang=eg,
accessed 27 July 2013.
instead, the Board decides to allow offset projects at mines potentially subject to BACT, it
should do so only after developing additionality analysis techniques specifically tailored to avoid
conflict with BACT determinations. In addition, the Board should require that all MMC project
developers attest in writing that the mine is in compliance with all PSD permitting requirements
and certify any offsets generated at these sites only after the Board has independently assessed
the baseline conditions and after any required BACT determinations have been made. In addition
to these measures, the Board should establish monitoring and reporting requirements to ensure
that any required BACT has been implemented and remains fully operational.

These informal comments update and incorporate by reference, as applicable to the
Board’s planned Protocol, comments previously submitted to the Climate Action Reserve
(“CAR”) regarding its Coal Mine Methane Project Protocol Version 2.0 (attached hereto as
“Appendix D”). In the context of developing a compliance-grade offset protocol for California’s
carbon market, which may serve as a model for other offsets programs in North American and
around the world, it is crucial that the protocol avoid legal and policy conflicts with federal law.

1. The Protocol’s complex relationship with the Prevention of Significant
Deterioration program under the Clean Air Act raises serious concerns about the
ability of the Protocol to produce real and additional emission reductions.

As of 2011, large new and expanded coal mines are required to obtain PSD permits in
order to comply with the Clean Air Act. New Source Review (“NSR”) under the Clean Air Act
applies to new or major modifications of mines. The U.S. Environmental Protection Agency
(“EPA”), through its Tailoring Rule, currently interprets the NSR provisions of the Clean Air Act
to require the establishment of greenhouse gas emissions thresholds in PSD permits for the
largest emitters. Under the Tailoring Rule, new underground mines that emit at least 100,000
tons CO₂e per year and modifications to underground mines that increase the mine’s emissions
by at least 75,000 tons CO₂e per year are required to obtain a PSD permit.

The PSD program puts substantially all of the permitting authority in the hands of state
environmental agencies. PSD permits are generally issued by state agencies with delegated
implementation responsibility. In order to obtain a PSD permit, regulated sources must

2 See generally 42 U.S.C. §§ 7470–79.
3 See 40 C.F.R. 52.21(b)(1)(i); 6. Coalition for Responsible Regulation v. EPA, 684 F.3d 102, 134-35 (D.C. Cir.
2012), reh’g en banc denied (D.C. Cir. Dec. 20, 2012), petition for cert. filed (U.S. Apr. 17, 2013) (No. 12-
1253).
4 40 C.F.R. 52.21(b)(49)(b)(iii–v). While it is not certain how many new mines are likely to be permitted in
coming years, if past trends are any indication, a substantial portion of any new mines are likely to meet or
exceed this threshold. Of 75 reporting underground coal mining facilities. 33 emitted 75,000 tons or more CO₂e
in that year. U.S. ENVIRONMENTAL PROTECTION AGENCY, 2011 GREENHOUSE GAS EMISSIONS FROM LARGE
5 States that do not have an approved NSR State Implementation Plan or that implement a plan developed by the
federal EPA rely to varying degrees upon the federal EPA to administer this portion of the Clean Air Act. All
but five states, the District of Columbia, Puerto Rico, and the Virgin Islands have some version of a State
Implementation Plan. See U.S. ENVIRONMENTAL PROTECTION AGENCY, NEW SOURCE REVIEW, WHERE YOU
demonstrate to state regulators that they employ BACT to mitigate emissions. But what specifically constitutes BACT is determined by the state permitting agency on the basis of its assessment of technical and economic feasibility of available pollution reduction measures.\(^6\) EPA has extremely limited authority to review these state agency findings unless they are unreasonable or unsupported by the evidentiary record. In short, state environmental agencies retain substantial discretionary authority to determine BACT in the context of PSD permits.\(^7\)

A. The Protocol creates a tangible perverse incentive that encourages state-level regulators to make weak BACT determinations.

The availability of offset credits for methane emission reduction measures will increase political pressure on state regulators who make GHG BACT determinations to require minimal or no controls in order to retain legal additionality for MMC projects which benefit industry in their states. State agencies make determinations as to what constitutes GHG BACT on a case-by-case basis, taking into account available techniques and technologies for emissions control, as well as technical and economic considerations.\(^8\) The measures a mine might employ in order to create offsets under the MMC protocol are among the measures an agency would consider for any mine requesting a PSD permit. This means that when a state makes a GHG BACT determination for an individual mine applying for a PSD permit, that state agency must decide whether the particular mine is required to capture and combust methane that would otherwise be released from the mine. If a mine must mitigate its methane emissions in order to comply with the terms of its PSD permit, this same mitigation could not generate offsets credits under the Protocol. But if a state does not require methane capture as BACT for the PSD permit, the mine may generate offsets credits from methane capture, if it chooses to do so. The state and the mine therefore have every incentive to find methane mitigation infeasible, even where the technology is readily available and not cost-prohibitive: both the mine operators and the state permitting agency would rather have a third party pay for the emissions reductions than to have them go uncompensated as a legal requirement. As explained in prior comments to CAR (see Appendix D), even the possibility or appearance of this perverse incentive can affect the integrity of the protocol. This concern is even more significant for California’s efforts to establish a legally binding compliance mechanism.

CAR responded to this concern only with the assurance that it would “track developments under the CAA and BACT determinations made at the state level will inform updates to the protocol’s additionality tests over time.”\(^9\) This approach is unsuitable for the Board’s compliance-grade protocol, which, as a matter of law, may only sanction credits that are real and additional.

\(^6\) See 42 U.S.C. § 7479(3). In some states the BACT determinations may be made by or implemented by the federal EPA, rather than the state permitting agency. See n. 4, supra.

\(^8\) See 42 U.S.C. § 7479(3).

While all offset protocols present some risk of undermining other enforcement regimes, the risk under the MMC Protocol is tangible and immediate. Here, there is an existing federal law implemented by state agencies with considerable discretion as to the stringency of applied standards and a strong local constituency with a financial stake in the determinations. Because the perverse incentive would affect agencies in other states, California’s actions could create serious consequences for the implementation of the Clean Air Act that neither California nor EPA, given its limited authority to review state BACT determinations, could effectively remedy.\(^\text{10}\)

If the Board proceeds with a protocol that does not address the PSD conflicts that we identify here, weak GHG BACT determinations may occur in key states that could thereby lock-in a deflated legal baseline for credits under the Protocol and hinder stricter GHG BACT determinations more broadly. We emphasize that this outcome would affect methane emissions at both mines where MMC Protocol projects are implemented and those where they are not.

B. BACT determinations that require methane reductions may invalidate issued offsets, triggering buyer liability and litigation risks.

If the Board were to credit reductions from mine methane control measures, and a subsequent BACT determination includes methane control measures, those credits could be subject to invalidation. When a permitting agency issues a PSD permit, it is required to consider both the technical and economic availability of emissions reductions measures. If, in making this determination, a state reaches a BACT determination that imposes strong GHG limits – rather than succumbing to the incentive to weaken permitting standards as described in section A above – certain otherwise eligible emissions reductions may no longer be creditable under the Protocol. If a PSD permit finds that the project activities constitute BACT, and are therefore legally required, the project could no longer be considered legally additional under the Protocol, and buyer liability would be triggered. In this situation, we are concerned that the triggering of buyer liability might affect investor confidence in this project type and/or the ARB offsets program more generally and that the Board could face protracted litigation.

At particular risk of invalidation are offsets issued for the term between the effective date of the BACT determination (which could precede the date the permit is issued if the mine has failed to apply for the permit in a timely manner) and the end of the reporting period during which the effective date occurs. Depending on the circumstances of the PSD program, the Board’s determination may be more complicated, and even reaching a clear understanding of which credits are valid and invalid may be extremely difficult to establish.

Furthermore, in a situation where a state BACT determination invalidates some or all of a project’s credits under the Protocol, it will not necessarily be clear at what point those legal obligations invalidated the credits. For example, if a mine did not apply for a PSD permit, but a court determined that one was needed, does a subsequent BACT determination that sets a performance standard above the MMC invalidate all credits the project generated, or just the

ones issued after the court decision? This complexity increases the uncertainty created by the interaction between the Clean Air Act and the MMC protocol.

2. The Board Should Adopt Measures to Affirmatively Address Conflicts with the Clean Air Act

In order to reduce the risks described above, the Board should adopt two measures that would serve to address both the regulatory incentive problem and any resultant uncertainty around potential invalidation. First, the Board should establish a schedule of dates and/or triggering events for re-evaluation of the legal additionality baseline under the protocol. The schedule should anticipate ongoing GHG BACT determinations, changing market conditions, and recent technical developments; it should also indicate the Board’s willingness to examine differences in GHG BACT determinations among different state permitting agencies for similar mines in evaluating additionality under the MMC protocol.

Second, the Board should adopt separate offsets eligibility criteria for projects at existing mines and projects at mines that may arguably be considered new or major modifications for the purposes of NSR. In these separate procedures for new or expanded mines, MMC projects at new mines or new emissions associated with major expansions of existing mines should remain ineligible for crediting until there is greater clarity about how NSR will be applied to mines, including specifically how BACT for GHG emissions will be determined. At a minimum, if the Board does consider crediting MMC projects at new or newly expanded mines, the Board should set more conservative eligibility criteria for these mines to avoid conflict with BACT determinations. In addition, the Board should require project developers to attest in writing that the mine is in compliance with all PSD permitting requirements, and that any even arguably needed BACT determinations are finalized prior to establishing the baseline emissions for the project. These latter requirements, however, only address the risk of invalidation and would not avoid regulatory incentives to weaken GHG BACT determinations.

A. The Board should adopt scheduled updating procedures to MMC baselines.

As we suggested to CAR, by establishing a clear schedule of dates and/or triggering events for re-evaluating the protocol legal and technical baselines, the Board will reduce the strength of perverse incentives to create long-term distortions in both the offsets market and Clean Air Act implementation. This measure will send a clear signal that, notwithstanding any attempts to manipulate additionality determination through artificially weak GHG BACT determinations, the Board will not allow these determinations to set an additionality baseline either unilaterally or for an extended and indefinite time. A triggering event could be a particular event, such as the issuance of the fifth PSD permit for mine methane emissions, or a certain level of market penetration of a methane reduction technology. Alternatively, the Board could use a time horizon. Moreover, unless the Board plans to monitor every relevant GHG BACT determination on its own, we suggest that it explicitly invite interested parties to identify relevant problems as the PSD program gains experience under the Tailoring Rule, reviewing the legal additionality standard at its discretion.
One of the principal benefits of this adaptive management feature would be that regulated entities and state regulators outside of California would have clear guidance regarding the conditions under which the baselines will be adjusted. As a result, market participants could invest with greater certainty, and the temptation for state regulators to game the GHG BACT process would be reduced. While this measure would not eliminate risk of states making GHG BACT determinations that are one generation behind the Protocol’s latest baseline adjustment, this form of adaptive management would limit the long-term lock-in of weak GHG BACT in states where financial incentives are oriented towards maximizing revenues from offsets for coal and other mines. It would also help to maintain the integrity of the protocol by reducing the perception that the protocol creates perverse incentives that might undermine the environmental benefits of mine methane reduction offsets.

B. The Board should refrain from crediting projects at arguably new mines or major modifications of existing mines. If it chooses to credit projects at these sites, it should do so only after ensuring that credited offsets will not be retroactively invalidated. Such projects should be required to meet more conservative eligibility criteria that avoid conflict with GHG BACT determinations.

Given the very real influence that California’s MMC Protocol may have on GHG BACT determinations for coal mines, the Board should avoid possible conflicts with the Clean Air Act by refraining from crediting projects at mines that are even arguably new or major modifications of existing mines for the purposes of NSR until several PSD permits have been issued in multiple states. Once it is clearer how states will make GHG BACT determinations for coal mines, the Board will be better able to identify eligibility criteria that would avoid crediting projects which might also have been considered GHG BACT in the absence of the Protocol.

If the Board rejects this position and instead elects to approve any projects from new mines or mine modifications large enough to raise the possibility that a PSD permit may be required, it should be particularly conservative in determining eligibility criteria. Eligibility criteria should be established for these mines that conservatively avoids crediting any activity that may be considered BACT. In any event, no credits should be issued for these projects until all arguably required PSD permitting procedures are complete and any measures required by these permits are implemented and verified. To operationalize this requirement, MMC Protocol project developers should be required to attest to such completion as a part of their project registration.

Even after there is greater clarity about how GHG BACT is being applied to coal mines, the Board should still maintain separate eligibility criteria for projects at mines that may arguably be subject to NSR. By adopting separate baseline determination procedures for projects at new mines and for major modifications, the Board can assess the GHG BACT determination made for each mine and determine whether the mandated controls reflect an additionality threshold consistent with the Board’s assessment of the state of the industry. In this way, the Board can simultaneously eliminate the risk that a particular GHG BACT determination might invalidate existing offsets and establish a baseline that will counteract the effects of any artificially weakened GHG BACT determinations that might arise in response to the protocol.
APPENDIX C

The Effects of a Mine Methane Capture Protocol on Coal Mining Profits

At the first Potential Mine Methane Capture (MMC) Compliance Offset Protocol Technical Working Group meeting on May 3rd, 2013, we mentioned that we were analyzing the potential effects of revenues from offset credits generated by coal mine methane destruction on the coal mining operations and the risk of leakage emissions resulting from this new revenue source. Below are the results of this analysis.

1. Summary of Results

We find that offsets revenues from MMC projects can substantially improve the profits of companies engaged in underground coal mining. At carbon offset prices as low as $10 per tonne of carbon dioxide equivalent (tCO₂e), offset revenues can increase the profits of an underground coal mine with an average profit margin and level of gassiness by 13%, and can increase mine profits by over 50% at the gassiest mines and at mines with relatively low profit margins. An offset price of $50/tCO₂e would lead to an increase in profits of an average coal mine by 66%, while more than doubling the profits of the most gassy mines and of mines with relatively low profit margins. Further, income from offsets would also provide coal mining companies with some buffer against annual variability of revenues from coal sales, such as results from relatively common temporary mine closures. Incremental increases in coal mine profits from offsets would come at a time when coal and natural gas are in close competition as fuels for electricity generation; small differences in fuel prices can affect the marginal dispatch order of power plants, and in turn, their associated greenhouse emissions. This set of conditions suggest that by substantially increasing the profits of some coal mines, the MMC protocol has the potential to induce leakage in the form of increased emissions from continued and expanded mining operations.

These results derive from an analysis of the revenues that could be generated from mine methane capture projects at the ten gassy active underground mines that the EPA has

<table>
<thead>
<tr>
<th>Mine</th>
<th>State</th>
<th>Offsets project</th>
<th>Offsets at $10</th>
<th>Offsets at $20</th>
<th>Offsets at $50</th>
</tr>
</thead>
<tbody>
<tr>
<td>McElroy Mine</td>
<td>WV</td>
<td>100% drained</td>
<td>5%</td>
<td>10%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>14%</td>
<td>29%</td>
<td>71%</td>
</tr>
<tr>
<td>Bailey Mine</td>
<td>PA</td>
<td>100% drained</td>
<td>8%</td>
<td>16%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>9%</td>
<td>18%</td>
<td>46%</td>
</tr>
<tr>
<td>San Juan South</td>
<td>NM</td>
<td>100% drained</td>
<td>13%</td>
<td>27%</td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>10%</td>
<td>20%</td>
<td>51%</td>
</tr>
<tr>
<td>West Elk Mine</td>
<td>CO</td>
<td>100% drained</td>
<td>64%</td>
<td>129%</td>
<td>322%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>32%</td>
<td>64%</td>
<td>161%</td>
</tr>
<tr>
<td>Robinson Run No. 9S</td>
<td>WV</td>
<td>100% drained</td>
<td>7%</td>
<td>14%</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>8%</td>
<td>16%</td>
<td>41%</td>
</tr>
<tr>
<td>Elk Creek Mine</td>
<td>CO</td>
<td>100% drained</td>
<td>16%</td>
<td>32%</td>
<td>79%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>23%</td>
<td>47%</td>
<td>117%</td>
</tr>
<tr>
<td>Federal No. 2</td>
<td>WV</td>
<td>100% drained</td>
<td>5%</td>
<td>10%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>15%</td>
<td>29%</td>
<td>73%</td>
</tr>
<tr>
<td>Bowie No. 2</td>
<td>CO</td>
<td>100% drained</td>
<td>5%</td>
<td>10%</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>7%</td>
<td>14%</td>
<td>36%</td>
</tr>
<tr>
<td>Dugout Canyon</td>
<td>UT</td>
<td>100% drained</td>
<td>3%</td>
<td>6%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>5%</td>
<td>11%</td>
<td>26%</td>
</tr>
<tr>
<td>American Eagle</td>
<td>WV</td>
<td>100% drained</td>
<td>7%</td>
<td>13%</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% VAM</td>
<td>5%</td>
<td>10%</td>
<td>25%</td>
</tr>
</tbody>
</table>

| Average | | 13% | 26% | 66% |
| Range | | 3% - 64% | 6% - 129% | 16% - 322% |

1 Mines continue to emit methane when active mining operations have been suspended.
identified as having drainage wells, but where mine operators were venting (i.e., not destroying) either all or nearly all mine methane emissions in 2006. For these ten mines, we analyze the potential offsets revenues from twenty hypothetical projects: the capture of 100% of drainage/gob methane emissions from each of the ten mines, and the capture of 50% of ventilation air methane emissions (“VAM”) from each of the ten mines. We use offsets prices of $10, $20 and $50 per tCO\textsubscript{2}e to examine the potential for carbon offsets revenues to meaningfully improve the economics of underground coal mining. Since this analysis uses average state-level coal prices, average mining profit margins, and mine-specific coal production and methane emissions from a single year (2006), this analysis is meant to provide insight into the range of financial benefits that could be derived from MMC offsets projects at active underground coal mines, rather than an assessment of the financial benefits of specific methane capture projects at specific mines. The assumptions used in this analysis are described below in the “Details of the Analysis” section.

Table 1 shows the potential effects on coal mine profits from the revenues for offsets generated by the twenty mine methane capture projects analyzed. We find the potential for large profit increases from MMC offsets. Profit margins vary dramatically among companies and over time. The impact that offsets revenues could have on the profits of mines with lower-than-average profit margins, which are also those mines most at risk of closure, would be larger than the results given here.

We did not perform a full analysis of the emissions leakage that might result from an increase in mine profits from offsets. Determining the extent to which increases in mining profits may cause an increase in coal use from individual mines is substantially more complex and involved than the analysis provided herein. Increasing the profitability of gassy mines generating offsets credits under the Protocol may enable some mines to expand operations or avoid closure. If these gassy mines displace coal that otherwise would have been produced by less gassy mines, the Protocol could result in a large increase in methane emissions that is unaccounted for by the Protocol. A second avenue by which increased coal mining profits can cause emissions leakage is if the increased profits result in lowered coal prices. This is of particular concern under present conditions, considering that reductions in natural gas prices over the last several years have lead to a substantial shift from coal to natural gas as fuels used to generate electricity in the United States. We encourage the Board to perform its own examination of the possible leakage emissions that could be induced by the increase in mining profits shown here and to monitor this risk as energy prices and conditions change, methane capture technologies improve, and offsets prices increase.

The leakage risk created by choosing to credit emissions reduction projects at facilities that produce coal, a fuel responsible for a large portion of the country’s greenhouse gas emissions, suggests that conservative project eligibility criteria that avoid crediting any non-additional activity is especially crucial for this Protocol. Since the main costs of a non-additional activity

offsets projects are monitoring and verification (technology costs of the offsets project are effectively zero since the technology would have been implemented anyway), revenues from non-additional projects go directly into profits. Until the leakage risk is better understood, it is best to take extra precaution to avoid windfall profits to non-additional activities by establishing conservative eligibility criteria.

2. Details of the Analysis

We estimate coal revenues using coal prices from underground coal mines by state and by type of coal (steam or metallurgical) obtained from the Energy Information Administration’s (EIA’s) 2012 Annual Coal Report averaged over 2010-2011. For the quantities of coal mined, we use data from 2006, compiled in the EPA 2009 report on mine methane emissions.

Since we do not have profit data for the ten specific mines we examine, we apply, in our analysis, a profit margin of 9.4%. This is the average profit margin over a five year period from 2008 to 2012 achieved by six U.S. coal mining companies: Alliance Resource Partners, Alpha Natural Resources, Arch Coal, CONSOL, Patriot Energy, and Walter Industries. These six companies are the only companies listed in the EPA 2009 report as owners of large gassy underground U.S. coal mines with publically available annual reports that focus their business primarily on coal mining.

To compare offsets revenues with coal mining profits, we assume very low offsets project implementation costs compared to offsets revenues, such that practically all of the calculated revenues go directly into profits. This would be true for non-additional projects, for which the main costs are monitoring and verification, and for technologies with implementation costs well below offsets income, as would likely be the case for flaring projects. The effects of carbon offsets on mining profits would be less significant for offsets projects with costs that are closer in size to the revenues generated by the offsets project.

Table 2 provides information about the ten mines and twenty projects analyzed, including estimates of their revenues from offsets and coal sales based on the assumptions described above. The last columns of this table shows offsets revenues as a percentage of coal sales revenues for various offsets prices.

The maximum values of offsets revenues as a percentage of coal sales revenues shown in this table are from a gassy mine that was closed for several months in 2006 (West Elk Mine).

5 Profit margins between 2008 to 2012 taken from these companies’ annual reports, are as follows: Alliance Resource Partners: 17.0%; Alpha Natural Resources: 2.6%; Arch Coal: 8.0% (we use a zero profit margin during 2012 when Arch Coal had negative profits); CONSOL: 9.1%; Patriot Energy: 3.0% (we use a zero profit margin during 2010 to 2012 when Patriot Energy had negative profits); Walter Industries: 16.6% (we use a zero profit margin during 2012 when Walter Industries had negative profits).

The temporary closure of this mine resulted in relatively high methane emission per ton of coal produced, since methane continues to vent even when mining operations have been paused. While this mine produces methane at substantially higher rates per ton of coal produced than the other nine mines analyzed, temporary mine closures are common, and EPA’s 2009 report which provides data on fifty active gassy underground mines shows that these levels of methane emissions per ton coal produced are not uncommon and can be much higher.

We would be more than happy to provide the spreadsheet used in this analysis.

Table 2: Mine methane capture carbon offset revenues compared with gross coal sales revenues

<table>
<thead>
<tr>
<th>Mine</th>
<th>State</th>
<th>Coal mined in 2006 (mil tons)(1)</th>
<th>Coal type: steam or metallurgical (2)</th>
<th>$ / ton coal (2)</th>
<th>Revenues from coal sales (mil$)</th>
<th>Offsets revenues</th>
<th>Methane that would be captured (MTCO2e)(3)</th>
<th>at an offsets price of:</th>
<th>at an offsets price of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Offsets projects assessed</td>
<td></td>
<td>$10</td>
<td>$20</td>
</tr>
<tr>
<td>McElroy Mine</td>
<td>WV</td>
<td>10.5</td>
<td>Steam</td>
<td>$58.11</td>
<td>$610.10</td>
<td>100% drained</td>
<td>0.29 $2.94</td>
<td>$5.88 $14.71</td>
<td>0.5% 1.0% 2.4%</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>10.2</td>
<td>Steam (a)</td>
<td>$54.78</td>
<td>$558.71</td>
<td>50% VAM</td>
<td>0.82 $8.19</td>
<td>$16.37 $40.93</td>
<td>1.3% 2.7% 6.7%</td>
</tr>
<tr>
<td>San Juan South</td>
<td>NM</td>
<td>7.0</td>
<td>Steam</td>
<td>$37.44</td>
<td>$262.08</td>
<td>100% drained</td>
<td>0.48 $4.80</td>
<td>$9.59 $23.98</td>
<td>0.9% 1.7% 4.3%</td>
</tr>
<tr>
<td>West Elk Mine</td>
<td>CO</td>
<td>6.0</td>
<td>Steam</td>
<td>$32.02</td>
<td>$192.09</td>
<td>50% VAM</td>
<td>0.25 $2.5</td>
<td>$5.0 $12.5</td>
<td>1.0% 1.9% 4.8%</td>
</tr>
<tr>
<td>Robinson Run No. 95</td>
<td>WV</td>
<td>5.7</td>
<td>Steam</td>
<td>$58.11</td>
<td>$331.20</td>
<td>100% drained</td>
<td>0.22 $2.2</td>
<td>$4.3 $10.9</td>
<td>0.7% 1.3% 3.3%</td>
</tr>
<tr>
<td>Elk Creek Mine</td>
<td>CO</td>
<td>5.1</td>
<td>Steam</td>
<td>$32.02</td>
<td>$163.28</td>
<td>50% VAM</td>
<td>0.26 $2.6</td>
<td>$5.1 $12.8</td>
<td>0.8% 1.5% 3.9%</td>
</tr>
<tr>
<td>Federal No. 2</td>
<td>WV</td>
<td>4.6</td>
<td>Steam</td>
<td>$58.11</td>
<td>$267.28</td>
<td>100% drained</td>
<td>0.13 $1.3</td>
<td>$2.6 $6.4</td>
<td>0.5% 1.0% 2.4%</td>
</tr>
<tr>
<td>Bowie No. 2</td>
<td>CO</td>
<td>4.4</td>
<td>Steam</td>
<td>$32.02</td>
<td>$140.87</td>
<td>50% VAM</td>
<td>0.36 $3.6</td>
<td>$7.2 $17.9</td>
<td>2.2% 4.4% 11.0%</td>
</tr>
<tr>
<td>Dugout Canyon</td>
<td>UT</td>
<td>4.4</td>
<td>Steam</td>
<td>$38.13</td>
<td>$167.77</td>
<td>100% drained</td>
<td>0.06 $0.6</td>
<td>$1.3 $3.2</td>
<td>0.5% 0.9% 2.3%</td>
</tr>
<tr>
<td>American Eagle</td>
<td>WV</td>
<td>2.4</td>
<td>Both (6)</td>
<td>$169.02</td>
<td>$405.64</td>
<td>50% VAM</td>
<td>0.26 $2.6</td>
<td>$5.1 $12.8</td>
<td>0.6% 1.3% 3.2%</td>
</tr>
</tbody>
</table>

Average: 1.2% 2.5% 6.2%

Range: 0.3% - 6.1% 0.6% - 12.1% 1.5% - 30.3%

(2) Average coal prices per state over 2010-2011 were taken from US Energy Information Administration, Annual Coal Report, Table 34. Average price of coal delivered to end use sector by census division and State, 2011, 2010, found http://www.eia.gov/coal/data.cfm#prices under "Average consumer prices by end use sector, Census division, and state," (accessed on May 31, 2013).
(3) Electric power (steam coal): CO $32.0, NM $37.4, PA $54.8, UT $38.1, WV $58.1. Coke (metallurgical coal): $169.0 US-wide
(4) Elk Creek recently implemented a project which captures drainage emissions for electricity generation.
(5) Bailey mine is listed in EPA. 2009. as producing both steam and metallurgical coal but the mine owner; however, CONSOL Energy, describes the mine as producing thermal coal (http://www.consolenergy.com/natural-gas-amp-coal/coal/map-of-mines.aspx)
(6) American Eagle produces both metallurgical and steam coal. Since we do not know the proportion of each type of coal produced at the mine, we made the conservative decision, in the context of this analysis, to use the price for metallurgical coal, which is substantially higher than steam coal.

MTCO2e = million tonnes CO2 equivalent
March 29, 2012

Via Electronic Submission

Rachel Tornek
Senior Policy Manager
Climate Action Reserve
523 W. Sixth Street, Suite 428
Los Angeles, California 90014

Comments on Coal Mine Methane Project Protocol
Version 2.0 for Public Comment

Dear Ms. Tornek:

The Environmental Law Clinic, part of the Mills Legal Clinic at Stanford Law School, submits these comments to the Climate Action Reserve (the “Reserve”) on behalf of Dr. Michael Wara, Associate Professor at Stanford Law School, regarding the Coal Mine Methane Project Protocol, Version 2.0 for Public Comment (the “Protocol”).

We appreciate the opportunity to share our perspective on the updated Protocol, and hope our views will contribute to the development of high-quality offset protocols. We would also like to acknowledge the detailed work that has gone into preparing the Protocol by both CAR Staff and the CMM working group. The result is both thorough and fully transparent.

Although the Protocol is generally robust in our opinion, we hope to (1) raise some potential concerns associated with the interaction between the Protocol and the Clean Air Act, and (2) discuss our reservations about the performance standard test with respect to on-site use of methane.

1. Regulatory Conflicts. The Protocol has the potential to undermine implementation of Clean Air Act regulations for coal mine methane emissions. This issue requires high-level policy discussion that is not part of the Protocol documentation to date.

As a preliminary matter, we want to highlight a potential conflict the Protocol might create with implementation of stationary source controls on greenhouse gas (“GHG”) emissions under the Clean Air Act (“CAA”). We believe this is an issue the Reserve should consider in more detail, especially if the Reserve intends to submit the Protocol to the California Air Resources Board for approval as a compliance-grade protocol for the California carbon market.

As the Protocol notes, EPA has begun regulating GHG emissions from stationary sources under the CAA. Under the legal requirements test for the Protocol, any EPA or CAA requirements for controlling methane would immediately become a part of a project’s...
baseline calculation, and thus not eligible for offset credits. 1 With no existing regulations that force destruction or capture of methane (outside of mine safety rules), the Protocol suggests that the possibility of future regulation is simply one risk factor that projects will have to consider.

This view oversimplifies the applicable Clean Air Act provisions and neglects several key issues, which we discuss below. These issues have potentially significant implications for this Protocol or any other involving a large stationary source of GHGs, both for the Reserve and the California Air Resources Board. As a result, we believe further high-level discussion is required to ensure that the Protocol does not create actual unintended conflicts—or even the appearance of unintended conflicts—with EPA or the Clean Air Act.

Indeed, these sorts of interactions are increasingly likely in a fragmented climate policy landscape, and the Reserve is well positioned to be a leader in developing carefully considered climate strategies that minimize potential conflicts with other regulatory systems.

1.1. Because BACT determinations are made by state permitting agencies, the Protocol could undermine effective implementation of CAA requirements by creating political pressure to weaken BACT standards outside of California.

We are concerned that the Protocol has the potential to undermine or weaken implementation of CAA regulations by creating an incentive for state regulators to weaken BACT determinations for controlling coal mine methane emissions. EPA’s recent Tailoring Rule requires certain new facilities or major modifications of existing facilities to obtain a Prevention of Significant Deterioration (“PSD”) permit, for which state permitting agencies must determine and apply the best available control technology (“BACT”). 2 In particular, major modifications of existing facilities, including coal mines, that result in increased emissions of at least 75,000 tons per year of CO₂e are required to obtain PSD permits. 3

Although EPA sets the basic contours of the PSD program, application of BACT is left to the states. In ADEC v. EPA, the Supreme Court decided that EPA’s ability to challenge state BACT determinations is limited to when the state’s determination is “not based on a reasoned analysis.” 4 This decision gives state permitting agencies wide discretion in determining BACT, subject only to procedural review from EPA.

Because states have effective control over BACT determination, those with coal mine projects seeking offset credits under this Protocol will face additional political

1 Protocol § 3.4.1.1.
3 Id. at 31516.
pressure to set BACT at levels that create headroom for offset creation. Strict BACT determinations would reduce or eliminate income from offsets, and thus state regulators could face pressure from offset project owners and developers to keep BACT determinations low. Further, state regulators will be aware, or will be made aware by the regulated sources, that in the event they set BACT less stringently, emissions reductions will nevertheless occur because of offsets. Under the ADEC standard, EPA would have limited options to challenge any state determinations it perceived as weak. Should this situation arise, the effect of the Protocol would be to unintentionally weaken or undermine implementation of the Clean Air Act.\(^5\)

Even if the income generated from Protocol projects has no influence on state regulators’ BACT determinations, the Protocol could nevertheless create the appearance of influence. This might occur if states make widely divergent BACT determinations. If some states apply strict BACT determinations, while others apply weak determinations, the Protocol could be seen as subsidizing the disparate outcome, as Protocol projects would presumably cluster in states with the most lax permitting agencies. It may be possible to create a “race to the top” in the Protocol’s legal requirements test by adopting a threshold from the strictest BACT determinations. But without knowing how states will make BACT determinations, and in what form, it is difficult to imagine writing such a provision into the Protocol at this stage of the CAA regulations.

While these concerns are only hypothetical at this point, we believe the Reserve should have a broader discussion about the unintended consequences its offsets protocols may have in sectors where impending state or federal regulations complicate the application of offset protocol design. We also believe that CAR should develop a plan, set down explicitly in the protocol, to address these concerns once we know more about how states will proceed with BACT determinations for CMM. We would propose that once 5 BACT determinations have been concluded, CAR review them and consider revising Section 3 of the Protocol as appropriate.

1.2. Determining what constitutes a “major modification” of an existing coal mine under EPA’s Tailoring Rule is an open legal question. The Protocol does not offer any guidance on how project developers would bear the risks associated with litigation on this issue.

The Protocol does not sufficiently anticipate the possibility that PSD permits might be required for existing coal mines, even without new regulations from EPA. To the best of our knowledge, there are no cases or regulations clarifying what constitutes a “major modification” of an existing coal mine for the purposes of the CAA. If certain common activities—for example, beginning work on a new section of a coal seam within an existing large mine—are determined to be major modifications, then the Tailoring Rule would

\(^5\) We note that exactly this situation has allegedly occurred under the CDM, where national regulators weakened standards for large landfills in order to create headroom for the creation of CERs under CDM landfill methane protocols. See Christiana Figueres, Sectoral CDM: Opening the CDM to the yet Unrealized Goal of Sustainable Development, 2 \textit{McGill Int. Journal of Sustainable Development Law and Policy} 1, 12 (2006).
apply, and PSD permits would be required for mines creating new emissions above the established threshold.

The Protocol would benefit from a fuller discussion of how these risks would be distributed, especially with the prospect of lengthy litigation or subsequent regulatory developments. We have several questions about what the timing of these kinds of changes would imply for calculating additionality under the Protocol:

- Does the Protocol’s legal requirements test apply at the time the legal requirement is identified (i.e., when a court or administrative agency finds that a PSD permit is required) or when the actual legal requirement is specified (i.e., when a state regulator identifies BACT for a particular mine project)?

- If litigation produces a determination that a major modification took place, does the Protocol’s legal requirements test adopt BACT requirements retroactively, from the date of the legal decision, or from the date of the subsequent issuance of a permit? Does it matter whether the question litigated was a new issue that was fairly disputed by both sides?

- If litigation or a new regulation defines a threshold for major modifications, must all applicable projects immediately adopt BACT requirements as part of the legal requirements test, or are those requirements not binding for the purposes of the Protocol during a legally valid gap (e.g., a temporary window for securing permits)?

1.3. Air pollution from coal mines is not yet subject to new source performance standards under Section 111 of the CAA, the future implementation of which would set a floor for state determination of BACT for PSD permits. The Reserve should monitor developments on this front.

EPA has not yet exercised its authority to create performance standards for coal mine methane emissions controls under Section 111 of the CAA, but faces pressure to do so. These performance standards would apply to all new and existing coal mines. In June 2010, a group of environmental organizations petitioned EPA to list coal mines as a category of stationary sources subject to performance standards for GHGs, including coal mine methane as a particular source of concern. EPA has not acted on this petition. As a result, the environmental groups sued, seeking to compel EPA to grant or deny the petition.6

The outcome of this ongoing litigation matters, as EPA’s performance standard authority extends to both new and existing emissions sources.7 Moreover, state determinations of BACT cannot allow emissions higher than levels determined under

7 42 U.S.C. § 7411(b) (new sources); 42 U.S.C. § 7411(d) (existing sources); see also Georgetown Climate Center, Issue Brief: EPA’s Forthcoming Performance Standards for Regualting Greenhouse Gas Pollution from Power Plants (Clean Air Act Section 111).
Section 111 of the CAA. That is, state BACT determinations are constrained to be no weaker than a performance standard set by EPA under its § 111 authority. Therefore, we believe the Reserve should pay close attention to this issue going forward, as it may either exacerbate or relieve some of the other CAA interactions described above.

If and when EPA sets a § 111 performance standard, it will act to significantly shift the baseline emissions for all participating or potential projects under the CMM protocol. The concerns raised above in section 1.2 also apply here. Furthermore, the Reserve should plan on this performance standard being subject to lengthy litigation. How will project registrations be treated and offsets generated by registered projects during this period of uncertainty be credited?

2. Additionality. The Protocol’s Performance Standard Test does not adequately address the possibility that drainage systems have the economically viable option to inject methane into a commercial pipeline, but choose instead to use or flare methane onsite.

We are concerned that some offset projects may be able to switch back and forth between earning offsets under this Protocol and selling methane into a pipeline network. If permitted, this temporal “stacking” would undermine the additionality of the Protocol, and runs counter to principles articulated in other Reserve protocols.\(^8\)

Our concerns arise because the Protocol’s eligibility rules allow a drainage system to qualify for offsets by flaring or otherwise using methane, even if selling methane to a pipeline is commercially viable. In other words, the eligibility rules do not include an analysis of the economic viability of injecting methane into a pipeline network. Drainage projects pass the performance standard test simply if they destroy methane “through any end-use management option other than injection into a natural gas pipeline.”\(^10\) Remaining eligibility rules require only that that project start dates be no more than three months after the drainage system begins commencing destruction of methane.\(^11\)

Under these rules, a drainage system that injects methane into a pipeline would not appear to qualify for offsets if the project developer decides to build a flare or other end-use management application to replace pipeline exports. Assuming the switch happens after three months of injection, it would appear to violate the eligibility rule on timing. However, the eligibility rules allow for multiple drainage systems to exist at a single coal mine, raising the prospect that as new boreholes are drilled as the mine face advances, the mine operator could elect to either create offsets by flaring or sell pipeline gas from new drainage wells.

\(^8\) 42 U.S.C. § 7479(3).

\(^9\) See, e.g., Climate Action Reserve, Rice Cultivation Project Protocol, Version 1.0 § 3.5.3 (prohibiting stacking of ecosystem service payment systems in addition to earning carbon offsets for the same mitigation activities).

\(^10\) Protocol § 3.4.2 (based on the analysis in Protocol Appendix A).

\(^11\) Id. § 3.2.
We would appreciate the Reserve confirming this matter, and suggest further that there is no valid reason to view a project at a mine that has ever injected gas into a pipeline as additional.

Unfortunately, nothing in the protocol rules precludes the reverse ordering: a project that could economically inject methane into a pipeline might choose instead to pursue an on-site activity and earn offset credits. So long as the drainage system does not inject methane into a pipeline network, it is assumed to be additional under the performance standard test.

That assumption is flawed, however, under a variety of plausible economic conditions. Project developers might instead see the Protocol rule structure as giving them the chance to bet long on carbon prices, with a backstop option to sell methane into a pipeline network if carbon prices do not rise as expected. Indeed, the rational project developer considering pipeline sales would be wise to consider whether or not a carbon offset provides a higher value hedge against low gas prices, as Figure 1 demonstrates.

Figure 1: Value of Offset Minus Value of Pipeline Sales ($ per metric ton CH4)

<table>
<thead>
<tr>
<th>Natural gas price ($/mmBTU)</th>
<th>5</th>
<th>15</th>
<th>25</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of carbon offsets</td>
<td>$ 91.25</td>
<td>$ 273.75</td>
<td>$ 456.25</td>
<td>$ 912.50</td>
</tr>
<tr>
<td>Value of natural gas sales</td>
<td>$ 131.83</td>
<td>$ 290.03</td>
<td>$ 342.76</td>
<td>$ 395.49</td>
</tr>
</tbody>
</table>

Each cell in the main table of Figure 1 shows the difference between the value of the carbon offset derived from flaring methane and the value of selling that methane into a pipeline, for a range of natural gas and carbon prices, per metric ton of CH4. Positive numbers are highlighted and indicate that for the prices applicable in that cell, the carbon offset is more valuable than the direct sale of methane. Thus, under these conditions, a project developer will prefer to generate offset credits rather than sell captured methane into the pipeline network.

For context, the U.S. Energy Information Administration reports that average wellhead natural gas prices in December 2011 were $3.06 per mmBTU; prices since 2000

12 Source: authors’ calculations using flaring as an example offset project. Assumptions: 52.73 mmBTU per tCH4 and 18.25 tCO2\text{e} avoided per tCH4 destroyed (using GWP and “r” values from Protocol equations 5.5 and 5.9, respectively); prices as shown in chart.
have generally ranged from $2.5 to $7.5 per mmBTU, with a few higher spikes.13 A carbon price of $5/tCO\textsubscript{2}e is a reasonable approximation of the voluntary carbon market, whereas estimates of California’s compliance costs are bounded by the remaining prices shown here.

We note that at current forward delivery prices for CCAs ($14.80 for Dec 2013 delivery),14 current compliance grade carbon prices would tend to push a coal mine to orchestrate a switch to selling offsets from selling pipeline gas.

The net effect of these incentives is to undermine a key assumption in the Protocol’s additionality calculations. By defining the performance standard test for drainage systems as any control technology that does not involve pipeline injection, the Protocol implies that pipeline sales are already economically viable and that all projects not injecting into pipelines do not find it viable to do so.15 The calculations presented in Figure 1 contradict this assumption and demonstrate that a rational project developer might prefer to pursue carbon offsets above pipeline sales, with the option to exit the Protocol and sell methane into a pipeline if relative carbon and natural gas prices do not justify the pursuit of offset credits. Indeed, the rational project developer might well prefer to view the Protocol as a hedge against low natural gas prices.

This situation is problematic and undermines the actually additionality of the Protocol. We recommend the Reserve revise the Protocol to prohibit switching from offset credits to pipeline sales, and vice versa.

Our understanding of VAM mitigation technologies is that no rational project developer would seek to invest in the capability to convert ventilation air (less than 1%...
methane) into pipeline quality gas (90-95% methane). This investment would be necessary to create the option for temporal stacking described above. Thus, our concern applies only to drainage systems.

Sincerely yours,

ENVIRONMENTAL LAW CLINIC
Mills Legal Clinic at Stanford Law School

Danny Cullenward, Certified Law Student
Deborah A. Sivas, Clinic Director and Supervising Attorney

On behalf of: Dr. Michael Wara
Associate Professor, Stanford Law School
Research Fellow, Freeman Spogli Institute for International Studies
Stanford University

We thank Anne Johnson for her valuable research assistance on the Clean Air Act.
