
Please cite this article in press as: Hayashi et al., Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem
Cells, Cell (2011), doi:10.1016/j.cell.2011.06.052
Reconstitution of the Mouse Germ Cell
Specification Pathway in Culture
by Pluripotent Stem Cells
Katsuhiko Hayashi,1,3 Hiroshi Ohta,1,3 Kazuki Kurimoto,1,3 Shinya Aramaki,1 and Mitinori Saitou1,2,3,*
1Department of Anatomy and Cell Biology, Graduate School of Medicine
2Institute for Integrated Cell-Material Sciences

Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
3JST, CREST, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
*Correspondence: saitou@anat2.med.kyoto-u.ac.jp

DOI 10.1016/j.cell.2011.06.052
SUMMARY the PGC fate (Kurimoto et al., 2008; Ohinata et al., 2005; Vincent
The generation of properly functioning gametes
in vitro requires reconstitution of the multistepped
pathway of germ cell development. We demonstrate
here the generation of primordial germ cell-like cells
(PGCLCs) in mice with robust capacity for spermato-
genesis. PGCLCs were generated from embryonic
stem cells (ESCs) and induced pluripotent stem cells
(iPSCs) through epiblast-like cells (EpiLCs), a cellular
state highly similar to pregastrulating epiblasts but
distinct from epiblast stem cells (EpiSCs). Reflecting
epiblast development, EpiLC induction from ESCs/
iPSCs is a progressive process, and EpiLCs highly
competent for the PGC fate are a transient entity.
The global transcription profiles, epigenetic reprog-
ramming, and cellular dynamics during PGCLC
induction from EpiLCs meticulously capture those
associated with PGC specification from the epi-
blasts. Furthermore, we identify Integrin-b3 and
SSEA1 asmarkers that allow the isolation of PGCLCs
with spermatogenic capacity from tumorigenic un-
differentiated cells. Our findings provide a paradigm
for the first step of in vitro gametogenesis.

INTRODUCTION

The germ cell lineage ensures the creation of new individuals in

most multicellular organisms, perpetuating the genetic and

epigenetic information across the generations. Accordingly,

in vitro reconstitution of germ cell development is one of the

most fundamental challenges in biology. In mice, germ cell fate

is induced in the epiblasts at around embryonic day (E) 6.0 by

the bone morphogenetic protein 4 (Bmp4) signaling from the

extraembryonic ectoderm (Lawson et al., 1999). The primordial

germ cells (PGCs), the origins for both the oocytes and the sper-

matozoa, are established at around E7.25 as a small cluster of

alkaline phosphatase (AP)-positive cells in the extraembryonic

mesoderm (Ginsburg et al., 1990; Saitou et al., 2002). Blimp1

(Prdm1) and Prdm14 are critical transcriptional regulators for
et al., 2005; Yamaji et al., 2008). Essentially all of the epiblast

cells from E5.5�E6.0 are competent to express Blimp1 and

Prdm14 in response to Bmp4, and the PGC-like cells induced

from the epiblasts ex vivo can form functional spermwhen trans-

planted into neonatal testes lacking endogenous germ cells (Ohi-

nata et al., 2009). A robust induction of germ cell fate in vitro

might therefore be possible if one could generate the pregastru-

lating (E5.5�6.0) epiblast-like cells in vitro.

Two groups of pluripotent cells in mice, the inner cell mass

(ICM) of preimplantation blastocysts at E3.5–E4.5 and the

epiblast of postimplantation embryos at E5.5–E6.5, give rise to

two distinct pluripotent stem cell (PSC) types in vitro, which

are called embryonic stem cells (ESCs) and epiblast stem cells

(EpiSCs), respectively (Brons et al., 2007; Evans and Kaufman,

1981; Tesar et al., 2007). ESCs bear the ground state (naive) plu-

ripotency and can contribute to all lineages when introduced into

blastocysts, whereas EpiSCs exhibit a primed pluripotency and

are unable to contribute to chimeras when injected into blasto-

cysts (Nichols and Smith, 2009). These two cell types show

distinct morphologies, cytokine dependence, gene expression,

and epigenetic profiles. Notably, human (h) ESCs are more like

mouse (m) EpiSCs, reflecting the difficulty of capturing the naive

pluripotency in nonrodent species (Nichols and Smith, 2009).

There have been attempts to generate gametes or PGCs

in vitro from ESCs both in mice and humans (for review, see Da-

ley, 2007; Saitou and Yamaji, 2010). These attempts were based

on a strategy of isolating cells that express a germ cell marker(s)

in embryoid bodies differentiated spontaneously under unde-

fined conditions. Consequently, these efforts were inefficient at

obtaining the cells of interest (less than�1.0%) and were unsuit-

able for analyzing the events that take place before the emer-

gence of germ cell-like cells. Critically, the induced cells have

never been demonstrated to contribute to healthy offspring.

There was a single report claiming the generation of live yet

abnormal offspring from gamete-like cells derived from ESCs

(Nayernia et al., 2006), but whether these offspring carry a full

haploid contribution from ESC-derived cells remains to be deter-

mined (Daley, 2007).

On the other hand, EpiSCs retain attributes of the original

epiblasts and are a potential source for the generation of germ

cell-like cells in vitro (Hayashi and Surani, 2009; Tesar et al.,
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2007). A subpopulation of the EpiSCs express Blimp1 under

a self-renewing condition, and a minority of them are positive for

stella (Pgc7/Dppa3), a marker for the established PGCs. How-

ever, the emergence of these cells from the EpiSCs occurs at a

low frequency even in the presence of BMP4 (�1.5%), and the

functionof thesecells in vivo hasnot beendemonstrated (Hayashi

and Surani, 2009). The relatively inefficient induction of the PGC

fate from EpiSCs may reflect the fact that the EpiSCs acquire

properties that are incompatible for efficientPGC inductionduring

their culture. Note that the competence of the epiblast to form

PGCs diminishes markedly after �E6.25 (Ohinata et al., 2009).

Given these findings, we explored a condition under which

ESCs and induced PSCs (iPSCs) (Takahashi and Yamanaka,

2006) with naive pluripotency are induced into pregastrulating

epiblast-like cells fromwhich, in turn, PGC-like cells are induced.

We demonstrate here the establishment of a defined culture

system reconstituting the PGC specification pathway in mice.

RESULTS

Pregastrulating Epiblast-like Cells from ESCs
We initially explored a variety of conditions to induce the PGC

fate from the EpiSC aggregates or from EpiSCs cultured in two

dimensions, but we did not find conditions that improved on

those described previously (Figure S1 available online and data

not shown) (Hayashi and Surani, 2009). We therefore decided

to explore a distinct strategy for the induction of the PGC fate

from PSCs, based on the following considerations: (1) ESCs

cultured under a serum- and feeder-free condition with a

MAPK inhibitor (PD0325901), a GSK3 inhibitor (CHIR99021),

and leukemia inhibitory factor (LIF) (2i+LIF) exhibit a uniform

property similar to the ICM/preimplantation epiblast (�E4.5)

state (the ground state) (Nichols et al., 2009; Ying et al., 2008);

(2) ESCs form PGCs within a few days when introduced into

the blastocysts; and (3) in the continuous presence of Activin A

(ActA) and basic fibroblast growth factor (bFGF), ESCs convert

into EpiSC-like cells exhibiting similarities to the postimplanta-

tion (�E6.5) epiblasts (Guo et al., 2009; Han et al., 2010). We

reasoned that the ground state ESCs might rapidly differentiate

into pregastrulating epiblast-like cells with high competence

for the PGC fate under conditions similar to those used to induce

EpiSC-like cells.

We derived ESCs from the E3.5 blastocysts bearing Blimp1-

mVenus and stella-ECFP (BVSC) transgenes (Ohinata et al.,

2008) under the ground state condition. Among a variety of

conditions examined, stimulation with ActA, bFGF, and knock-

out serum replacement (KSR) at a concentration as low as 1%

resulted in the uniform induction of ESCs into flattened epithelial

structures resembling the epiblasts over the 3 day period (Fig-

ures 1A and 1B). Stimulation with higher concentrations of

KSR (2%–20%) resulted in the maintenance of a dome-shaped

ESC morphology: the higher the KSR concentration, the greater

the maintenance of the ESC-like state. In contrast, stimulation

with ActA and bFGF without KSR resulted in an increased rate

of cell death (data not shown).

Upon stimulation with ActA, bFGF, and 1% KSR, the cells

grew rapidly for the first 2 days but thereafter underwent a signif-

icant extent of cell death, and the number of the surviving cells at
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day 3 was similar to that at day 2 (Figure 1D). As in ESCs, we

observed no BVSC expression in the induced epiblast-like cells

(hereafter called EpiLCs) during the 3 day differentiation period

(Figure 1B). An independent ESC line bearing Prdm14-mVenus

(P14V) transgenes (Yamaji et al., 2008) exhibited a similar differ-

entiation upon the same stimulation: P14V was expressed in the

ESCs but declined along with the EpiLC induction (Figure 1B).

Immunofluorescence (IF) analysis showed that, during the EpiLC

induction, Oct3/4 (Pou5f1) was continuously expressed, but

Sox2 and Nanog were decreased by day 2 and day 1, respec-

tively (Figure 1C). The downregulation of Nanog during EpiLC

differentiation was in sharp contrast to its continued expression

in EpiSCs (Figure S1C) (Hayashi and Surani, 2009).

We quantified the expression of key genes in the EpiLCs,

EpiSCs, and E5.75 epiblasts by quantitative (Q)-PCR (Figure 1E).

During EpiLC differentiation,Oct3/4was expressed at a constant

level, whereas genes more tightly associated with the ICM state,

such as Sox2, Nanog, and Prdm14, as well as Zfp42 (Rex1),

Tbx3, Tcl1, Esrrb, Klf2, Klf4, and Klf5, were downregulated to

levels similar to those in the epiblasts. In EpiSCs, Sox2, Nanog,

and Klf5 were retained at levels similar to those in ESCs. In

both EpiLCs and EpiSCs, Wnt3, Fgf5, and Dnmt3b, which are

upregulated in the epiblasts, were indeed elevated. Notably, in

EpiLCs, as in the epiblasts but in contrast to EpiSCs, endoderm

markers such as Gata4, Gata6, and Sox17 were downregulated

or remained at very low levels. Blimp1, which, apart from PGCs,

shows expression in the visceral and definitive endoderm, was

downregulated in EpiLCs, but not in EpiSCs (Figure 1E and

Figures S1B and S1C). These findings indicate that EpiLCs

show properties that are consistent with pregastrulating epi-

blasts, whereas EpiSCs bear distinct characteristics.

PGC-like Cell Induction from EpiLCs
We next examined whether the EpiLCs would be induced into

PGC-like cells under conditions that fostered induction of the

epiblast cells to the PGC fate (a floating condition in GMEM

with 15% KSR [GK15] with cytokines including BMP4) (Ohinata

et al., 2009). We first induced the ESCs and day (d) 1/2/3 EpiLCs

(�1000 cells) for 2 days and evaluated their BVSC expression.

No strong BV induction was observed in any of the aggregates

cultured in the GK15 alone or the GK15 with LIF (Figure 2A and

Figure S2A). In contrast, when cultured with BMP4 or BMP4

and LIF, robust BV induction (�40%) (BV-positive [+], strongly

positive for BV as defined by fluorescence activated cell sorting

[FACS]) was observed in the aggregates of d2 and d3 EpiLCs,

but not ESCs or d1 EpiLCs (Figure 2A and Figure S2A). We noted

that aggregates from d3 EpiLCs were much smaller and looked

less integrated compared to those from other origins (Figure 2A).

SC was not observed in any of the cultures during the 2 day

period (Figure 2A and Figure S2A). Thus, d2 EpiLCs are highly

competent to express Blimp1 in response to BMP4 and for

subsequent healthy growth.

We next examined whether d2 EpiLCs form BVSC(+) PGC-like

cells when cultured for a longer period. When these cells were

cultured in the GK15 alone, no significant BVSC induction was

observed during the 6 day period (Figure 2B and Figure S2B).

When they were cultured with BMP4, BV was strongly induced

on day 2 (�35.3%). On day 4, the aggregates grew well and



Figure 1. Epiblast-like Cell Induction from ESCs

(A) The scheme for epiblast-like cell (EpiLC) induction.

(B) EpiLC induction from BVSC (top) and P14V (bottom) ESCs. Bright-field and fluorescence images from the reporters are shown. Scale bar, 50 mm.

(C) Immunofluorescence (IF) analysis of Oct3/4 (top row), Sox2 (second), and Nanog (third) expression counterstained by DAPI (bottom) during the EpiLC (day [d]

1, d2, and d3) induction. Scale bar, 50 mm.

(D) Cell growth during the EpiLC induction. Average cell numbers with standard deviations (SDs) from three independent experiments are shown.

(E) Gene expression profiles during the EpiLC induction, of the epiblasts at E5.75, and of the EpiSCs as measured by Q-PCR. For each gene examined, the DCT

from the average CT values of the two independent housekeeping genes Arbp and Ppia was calculated. The value for ESCs was set as 0. For each point, the

average value from three, two, and two independent experiments for EpiLCs (red open circles), epiblasts (red filled squares), and EpiSCs (blue filled squares),

respectively, is shown on the log2 scale, with SDs. u.d., undetectable.

See also Figure S1 and Table S6.
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Figure 2. PGC-like Cell Induction from EpiLCs in Culture

(A) The effects of LIF, BMP4, or both on BV induction in ESCs and d1, 2, and 3 EpiLCs cultured for 2 days. Scale bar, 200 mm.

(B) The effects of BMP4, BMP4 and LIF, or BMP4, LIF, SCF, BMP8b, and EGF (full induction) on BVSC induction in the 6 day culture of the day (d) 2 EpiLCs. Scale

bar, 200 mm.

(C) FACS analysis of the BVSC expression from d2 EpiLCs under the full induction condition during the 6 day culture.

(D) Gene expression dynamics during the PGCLC induction calculated as in Figure 1E. For each point, the average value from two independent experiments is

plotted on the log2 scale, with standard deviations (SDs). Red circles and lines, values of BV or BVSC(+) cells (day 2 and days 4/6, respectively); pink circles and

lines, values of BV(�) cells.

(E) Blimp1 (left) and stella (right) expression levels with SDs in BV(+) (day 2) and BV(+)SC(�) (green bars) or BVSC(+) (blue bars) cells (days 4/6), determined as

described in (D).

See also Figure S1, Figure S2, Figure S3, Figure S4, Figure S5, Figure S7, and Table S6.
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the BV(+) cells (�9.8%) formed several tight clusters, some of

which were positive for SC (BVSC,�1.0%). On day 6, the aggre-

gates developed further, but the BV(+) foci becamemuch smaller

(�0.4%) (Figure 2B and Figure S2B). When the d2 EpiLCs were

cultured with BMP4 and LIF, on day 2, the aggregates showed

strong BV positivity (�44.5%), and on day 4, the BV(+) cells

formed tight and larger clusters (�42.0%), some of which ex-

hibited SC (BVSC, �7.4%). On day 6, the BVSC(+) foci (BV,

�5.2%; BVSC,�1.0%) became smaller but did persist peripher-

ally in the aggregates (Figure 2B and Figure S2B). From days 4 to

6, the BV-negative (BV-negative [�], negative or weak for BV

defined by FACS) population exhibited rapid expansion (see

below). When the d2 EpiLCs were cultured under the full induc-

tion condition (GK15 with BMP4, BMP8b, LIF, stem cell factor

[SCF], and epidermal growth factor [EGF]), on day 2, the aggre-

gates exhibited strong BV (�41.5%), and on day 4, BV(+) cells

were located peripherally (�38.7%) and began to show explicit

SC (BVSC,�13.5%). On day 6, the whole aggregates expanded,

and the BVSC(+) cells covered the aggregates peripherally (BV,

�16.9%; BVSC, �7.2%) (Figures 2B and 2C and Figure S2B).

Notably, when the d2 EpiLCs were cultured with BMP8b, SCF,

LIF, and EGF or with SCF, LIF, and EGF but without BMP4, the

aggregates looked similar to those cultured only with LIF, and

no significant BV(SC) induction was observed (Figures S2B

and S2C). These findings demonstrate that the d2 EpiLCs are

induced into BVSC(+) PGC-like cells essentially by BMP4, and

the maintenance/proliferation of the BVSC(+) cells is enhanced

by LIF and more robustly by the combinatorial effects of LIF,

SCF, BMP8b, and EGF.

The BVSC(+) areas were alkaline phosphatase (AP)-positive,

and the BVSC(+) cells remained up to 10 days under the full

induction condition (Figure S3). We were able to reproduce the

induction of BVSC or P14V(+) PGC-like cells through the d2

EpiLCs from several independent ESC lines (Figure S4). In two-

dimensional culture, we were unable to find a condition under

which BV(SC)(+) cells are induced from the EpiLCs (data not

shown).

We compared BVSC induction from d2 EpiLCs with that from

the epiblasts. The structural development of the aggregates

and the efficiency and dynamics of BVSC induction from the d2

EpiLCs were similar to those from the epiblasts (Figure S5A):

under the full induction condition, on day 2, a majority of both

the d2 EpiLCs and the epiblast cells were shifted toward the

BV-positive state, and �46% of the epiblast cells (as compared

to �41.5% of d2 EpiLCs) exhibited strong BV (Figures S5B and

S5C), indicating that both cell types bear similar competence to

expressBlimp1 in response to BMP4. On days 4/6, the efficiency

and mode of the emergence of the BVSC(+) cells from both cell

types were again similar, although the response of the epiblast

cells appeared somewhat more cohesive (Figure S5C). These

findings demonstrate that the d2 EpiLCs bear similar, if not iden-

tical, properties to the pregastrulating epiblast cells.

We evaluated the gene expression dynamics associated with

the induction of PGC-like cells (hereafter called PGCLCs) from

d2 EpiLCs by Q-PCR (Figure 2D). Whereas Oct3/4 showed rela-

tively constant expression in BV and BVSC(+) (day 2 and days

4/6, respectively) cells, Sox2 and Nanog were significantly re-

gained in these cells. Genes specifically upregulated upon
PGC specification, including Blimp1, Prdm14, Tcfap2c, Nanos3,

stella (Dppa3), Tdrd5, and Dnd1, were all highly elevated in

BV(SC)(+) cells. In contrast, genes associated with a somatic

mesodermal program, such asHoxa1,Hoxb1, andSnai1, showed

transient upregulation in BV(+) cells at day 2 but subsequently ex-

hibited drastic repression in BVSC(+) cells at days 4/6. On the

other hand,Dnmt3a/3b,Np95 (Uhrf1), and c-Mycweremonoton-

icallydownregulated.Genesassociatedwith latergermcell devel-

opment,Mvh (Ddx4)andDazl, showedonlyamodestupregulation

in BVSC(+) cells. Thus, the gene expression dynamics associated

with PGCLC induction are very similar to those associated with

PGC specification (Kurimoto et al., 2008; Saitou et al., 2002).

We noted that, at day 6, the level of endogenous stella mRNA

in BV(+)SC(�) cells was similar to that in BVSC(+) cells (Fig-

ure 2E). Because the SC expression becomes eminent only after

E9.5, 2.5 days later than the onset of stella expression (Ohinata

et al., 2008; Saitou et al., 2002), this finding indicates that

many of the BV(+)SC(�) cells at a later stage of induction express

endogenous stella at a high level and thus should be considered

established PGCLCs.

Global Transcription Profiles of EpiLCs and PGCLCs
To determine the global transcription dynamics for PGCLC

induction, we isolated total RNAs from ESCs, d1/2/3 EpiLCs,

EpiSCs, E5.75 epiblasts, and BVSC-positive PGCLCs at day 6

of induction and stella-EGFP(+) PGCs at E9.5 (Payer et al.,

2006). We performed two sets of microarray hybridization: one

with nonamplified RNAs from ESCs, d1/2/3 EpiLCs, EpiSCs,

and PGCLCs and the other with amplified RNAs from ESCs, d2

EpiLCs, EpiSCs, E5.75 epiblasts, PGCLCs, and E9.5 PGCs.

Unsupervised hierarchical clustering (UHC) of nonamplified

samples showed that two independent samples from ESCs,

d1/2/3 EpiLCs, EpiSCs, and PGCLCs were clustered tightly

together (Figure 3A), reflecting the reproducibility of the PGCLC

induction. Principal component analysis (PCA) provided ESCs,

d1, d2, and d3 EpiLCs with PC2 scores of progressively in-

creasing values, suggesting that EpiLC induction from ESCs is

a directional and progressive process (Figure 3B). EpiSCs were

clustered distantly from the other samples (Figure 3A), indicating

their divergence from the other cell types.

UHC of amplified samples showed that, first, two independent

samples from all cell types were again clustered together, and

second, d2 EpiLCs and PGCLCs were clustered most closely

with E5.75 epiblasts and E9.5 PGCs, respectively, whereas

EpiSCs were clustered distantly from the other cell types (Fig-

ure 3C). Scatter plot analysis demonstrated close similarities

between d2 EpiLCs and E5.75 epiblasts and between PGCLCs

and E9.5 PGCs and a relatively large difference between EpiSCs

and E5.75 epiblasts (Figure 3D). We plotted all cell types in a

three-dimensional space defined by three major parameters

generated by PCA (Figure 3F). Notably, the pathway of PGCLC

induction from d2 EpiLCswas parallel to that of E9.5 PGC forma-

tion from E5.75 epiblasts (Figure 3F). Furthermore, EpiSC deriva-

tion from epiblasts involves a discrete pathway (Figure 3F),

reflected by a distinct PC1 (representing 61% of the total

variance) score. These findings indicate strongly that PGCLC

formation from ESCs through EpiLCs is a recapitulation of

PGC formation from epiblasts.
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Figure 3. Global Transcription Profiles during

PGCLC Induction

(A) Unsupervised hierarchical clustering (UHC) of non-

amplified RNAs from ESCs; day (d) 1, d2, and d3 EpiLCs;

EpiSCs; and PGCLCs.

(B) Scores of principal component (PC) 2 of ESCs and d1,

d2, and d3 EpiLCs.

(C) UHC of amplified RNAs from ESCs, d2 EpiLCs,

EpiSCs, E5.75 epiblasts, PGCLCs, and E9.5 PGCs.

(D) Comparison by scatter plots of transcriptome of E5.75

epiblasts with d2 EpiLCs and EpiSCs and of E9.5 PGCs

with BVSC(+) PGCLCs at day 6. R represents the corre-

lation coefficient.

(E) Functional categories overrepresented in genes upre-

gulated in the epiblasts, EpiLCs, and EpiSCs, compared

with ESCs.

(F) PCA of amplified RNAs from ESCs, d2EpiLCs, EpiSCs,

E5.75 epiblasts, PGCLCs, and E9.5 PGCs.

See also Figure S7 and Table S1, Table S2, and Table S3.
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We listed and classified the genes upregulated in E5.75

epiblasts, d2 EpiLCs, and EpiSCs relative to the levels in

ESCs. EpiSCs upregulated more genes associated with the

development of a variety of organ systems (heart, blood vessels,

kidneys, muscle, and bone) than E5.75 epiblasts and d2 EpiLCs

(Figure 3E and Table S2), demonstrating that EpiSCs acquire

more developmentally advanced characteristics than E5.75

epiblasts and d2 EpiLCs. Major genes that are up- or downregu-

lated in E5.75 epiblasts, d2 EpiLCs, and EpiSCs in comparison to
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ESCs, and in E9.5 PGCs and PGCLCs in

comparison to epiblasts and EpiLCs, respec-

tively, are listed in Table S2 and Table S3.

Epigenetic Profiles of the PGCLCs
We next evaluated the epigenetic profiles of

PGCLCs. IF analysis revealed that BV(SC)(+)

PGCLCs at day 6 appeared to have reduced

H3K9me2 and cytosine methylation (5mC) and

instead showed elevated H3K27me3 levels,

as compared to non-PGCLCs (Figures 4A, 4B

and 4D). To confirm this observation, we quan-

tified the dynamics of H3K9me2, H3K27me3,

and 5mC levels during the PGCLC induction

by western/dot blot analysis. In ESC to EpiLC

differentiation, the H3K9me2 and 5mC levels

increased. In contrast, in EpiLC to PGCLC dif-

ferentiation, they decreased significantly. Non-

PGCLCs retained relatively high levels of

H3K9me2 and 5mC (Figures 4C and 4E). On

the other hand, in ESC to EpiLC differentiation,

the H3K27me3 level decreased, and in EpiLC

to PGCLC differentiation, it in turn increased.

Non-PGCLCs retained a similar level of

H3K27me3 to EpiLCs (Figure 4C). Thus, the

dynamics of histone modification and 5mC

changes during PGCLC formation are a recapit-

ulation of those observed during PGC forma-

tion (Seki et al., 2005).
We determined the imprinting states of maternally (Snrpn,

cnq1ot1) and paternally (Igf2r, H19) imprinted genes in

GCLCs. Whereas the PGCLCs did retain methylation of Igf2r

nd Snrpn, they appeared to have a slightly reduced level of

ethylation of H19 and Kcnq1ot1, suggesting that PGCLCs

ay be initiating the process of imprint erasure (Figure 4F). A

lobal decrease of 5mCwith a relative maintenance of imprinting

PGCLCs is a characteristic that is consistent with that of

igrating PGCs (Lee et al., 2002).



Figure 4. Epigenetic Properties and Cellular Dynamics of the PGCLCs

(A and B) IF analyses of H3K9me2 (A) and H3K27me3 (B) in PGCLCs under the full induction condition at day 6. Dotted lines delineate PGCLCs recognized by anti-

GFP antibody staining. DAPI staining, on the right. Scale bar, 20 mm.

(C) Western blot analyses (left) of H3K9me2 and H3K27me3 in ESCs, d2 EpiLCs, and BV(+) or (�) cells induced for 6 days. Quantification of H3K9me2 and

H3K27me3 levels using H3 levels as a standard is shown with the standard deviations (SDs) on the right.

(D) Immunofluorescence (IF) analysis of 5mC in PGCLCs performed as in (A) and (B). Arrows indicate PGCLCs. Scale bar, 20 mm.

(E) Dot blot analysis of 5mC performed as in (C). Quantification of the 5mC level using the ESC level as a standard is shown with SDs on the right.

(F) Bisulfite sequence analysis of 5mC of differentially methylated regions (DMRs) of the imprinted genes (Igf2r, Snrpn, H19, and Kcnq1ot1) in a wild-type mouse

(top), the BVSC-ESCs (middle), and the day 6 BVSC(+) PGCLCs (bottom). White and black circles represent unmethylated and methylated CpG sequences,

respectively.

(G) The numbers of BVSC(+) (blue circles), BV(+)SC(�) (green circles), and BV(�) (gray circles) cells per aggregate during the PGCLC induction. Each circle

represents the average number of each cell type from 10 aggregates in four independent experiments.

(H) FACS analysis of the cell cycle states of BVSC(+), BV(+)SC(�), and BV(�) cells during the PGCLC induction.

(I) BrdU incorporation of the PGCLCs during the 6 hr culture on day 4 of induction. Dotted lines delineate PGCLCs recognized by anti-GFP antibody staining. Scale

bar, 20 mm.

See also Table S4 and Table S6.
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Dynamics of PGCLC Induction and Proliferation
We explored the dynamics of PGCLC induction and proliferation

(Figure 4G and Table S4). At day 2 of PGCLC induction from
aggregates of �1000 EpiLCs, the average number of BV(+) cells

was 783 (�39%), whereas that of BV(�) cells was 1225 (�61%).

At day 4, the average number of BV(+) cells was 1415 (�26%),
Cell 146, 1–14, August 19, 2011 ª2011 Elsevier Inc. 7



Table 1. Colonization of the Donor Cells in the W/Wv Recipient Testes

Parental

Cells

Transferred

Population

No. of Testes

Transplanted

No. of Cells

Transplanted/Testis

No. of Testes with

Teratoma (%)

No. of Testes with

Spermatogenesis (%)

No. of Spermatogenesis

Colonies in the Testis

BVSC ESCs nonsorted cells 8 2.9 3 105 8/8 (100) ND ND

BV (+) cells 6 1.1 3 104 0/6 (0) 3/6 (50) 4, 1, 1

AAG ESCs nonsorted cells 6 2.4 3 104 6/6 (100) ND ND

Integrin-b3,

SSEA1 (+) cells

6 1.0 3 104 0/6 (0) 5/6 (83) 10, 8, 6, 3, 1

20D17 iPSCs Integrin-b3,

SSEA1 (+) cells

18 1.0 3 104 0/18 (0) 3/18 (17) 6, 2, 1

178B-5 iPSCs Integrin-b3,

SSEA1 (+) cells

6 1.0 3 104 2/6 (33) 0/4 (0) 0

492B-4 iPSCs Integrin-b3,

SSEA1 (+) cells

6 1.0 3 104 0/6 (0) 0/6 (0) 0

The donor PGC-like cells generated from the ESCs (BVSC and AAG) and the iPSCs (20D17, 178B-5, and 492B-4) were transferred into theW/Wv recip-

ient testes through their seminiferous tubules. The colonization of the donor cells in the recipient testes is shown with the number (No.) of testes with

teratoma formation or spermatogenesis and with the number of spermatogenesis colonies per testis. ND, not determined. See also Table S5.
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among which 482 cells were SC(+) (�9%), whereas that of BV(�)

cells was 3967 (�74%). At day 6, the average number of BV(+)

cells was 2222 (�12%), among which 848 cells were SC(+)

(�5%), whereas that of BV(�) cells was 15811 (�88%). The

cell cycle analysis revealed that BV(+) cells, especially BVSC(+)

cells at days 4/6, were enriched in the G2 phase, whereas

BV(�) cells exhibited profiles similar to those of cycling somatic

cells, especially at days 4/6 (Figure 4H). Consistently, PGCLCs

showed little BrdU incorporation during the 6 hr culture on

day 4 of induction, whereas non-PGCLCs actively incorporated

BrdU (Figure 4I). Collectively, these data indicate that BV induc-

tion from EpiLCs is an efficient process, and presumably all of

the BV(+) cells initiate stella expression thereafter (irrespective

of their SC positivity; see above), but the induced BV(SC)(+) cells

proliferate slowly (one to two divisions from day 2 to day 6),

whereas BV (�) cells grow more rapidly (three to four divisions).

The slow growth and the arrest at the G2 phase of the cell cycle

are key characteristics of migrating PGCs (Seki et al., 2007), and

the finding that PGCLCs bear equivalent properties provides

further evidence that PGCLC formation is a reconstitution of

PGC formation.

Spermatogenesis and Normal Offspring from PGCLCs
A cell’s ability to contribute to spermatogenesis is themost strin-

gent index of whether it has become a male germ cell. We next

examined whether the PGCLCs undergo proper spermatogen-

esis by transplanting them into the seminiferous tubules of

W/Wv neonatal mice lacking endogenous germ cells (Chuma

et al., 2005). We induced the PGCLCs for 6 days, transplanted

dissociated single cells from the entire aggregates or the

FACS-sorted BV(+) cells (�104 cells/testis), and evaluated the

recipients after 10 weeks. All of the testes transplanted with non-

sorted cells developed teratomas, but those transplanted with

the BV(+) cells did not (Table 1). Instead, three out of six testes

transplanted with the BV(+) cells harbored seminiferous tubules

with proper spermatogenesis: these tubules contained dark

central sections corresponding to spermiation and were much

thicker than those without spermatogenesis (Figure 5A and
8 Cell 146, 1–14, August 19, 2011 ª2011 Elsevier Inc.
Table 1). Indeed, the thick tubules contained abundant sperma-

tozoa with normal morphology and showed a robust wave of

spermatogenesis, whereas the thin tubules contained only Ser-

toli cells (Figure 5A). The efficiency of the colonization of the

PGCLCs was comparable to that of PGCs in vivo (Chuma

et al., 2005; Ohinata et al., 2009).

We fertilized the oocytes with the spermatozoa derived from

PGCLCs by intracytoplasmic sperm injection (ICSI). The resul-

tant zygotes developed normally, and by the blastocyst stage,

embryos from PGCLC-derived sperm exhibited strong expres-

sion of SC derived from the donor genome (Figure 5B). We

transferred the embryos to foster mothers, which gave rise to

grossly healthy offspring with normal placentas and imprinting

patterns (Figures 5C, 5D, and 5F). The BV and SC transgenes

were positive in 13 and 7 of 21 offspring, respectively (Figure 5C),

consistent with the transmission of the transgenes through

haploid donor spermatozoa. The male and female offspring

from the PGCLCs developed normally and grew into fertile

adults (Figures 5D and 5E and Table S5). These findings demon-

strate that the PGCLCs are comparable to PGCs in their function

as male germ cells.

Identification of Surface Markers for PGCLC Isolation
Identification of surface markers delineating a pure population of

PGCLCs is essential for isolating PGCLCs bearing no transgenic

reporters, such as those induced from iPSCs or ESCs from

various mammalian species, including humans (Saitou and

Yamaji, 2010). We screened surface markers (SSEA1, PECAM1,

EPCAM, N-cadherin, Integrin-b3, Integrin-aV, CXCR4, and KIT)

and their combinations to identify those that define the BV(+)

population. When aggregates of BVSC d2 EpiLCs induced for

6 days were FACS sorted by SSEA1 and Integrin-b3, they were

divided into three major subpopulations (P1 [SSEA1 high, Integ-

rin-b3 high], P2 [SSEA1 high, Integrin-b3 low], and P3 [SSEA1

low, Integrin-b3 high/low]). Notably, more than 99% of the cells

in P1 were BV(+), whereas only 1.2% and 1.7% of the cells in

P2 and P3, respectively, contained BV(+) cells (Figure 6A), indi-

cating that P1 is nearly identical to the BV(+) population.
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We induced ESCs bearing Acro/Act-EGFP (AAG) transgenes

(Ohta et al., 2000) into PGCLCs and FACS sorted the day 6

aggregates by SSEA1 and Integrin-b3. Although the sorting

pattern of these aggregates was somewhat different than that

of the aggregates from BVSC ESCs, we identified three similar

subpopulations (Figure 6B). We compared the expression levels

of the 20 genes analyzed in Figure 2D between these subpopu-

lations and the BV(+) PGCLCs. The expression levels of the 20

genes in P1 correlated well with those in BV(+) PGCLCs (R2 =

0.80), whereas those in the other two subpopulations showed

poor correlation (Figure 6B).

To examine whether the P1 subpopulation from AAG ESCs

contributes to the spermatogenesis, we transplanted them, as

well as the whole population, into the seminiferous tubules of

W/Wvmice and evaluated the recipients after 8 weeks.We found

teratomas in all of the testes transplanted with the whole popu-

lation, whereas no teratomas were detected in the testes with

the P1 subpopulation, and indeed, five out of six testes demon-

strated proper spermatogenesis with GFP fluorescence by the

AAG transgenes (Figures 6C–6G and Table 1).With ICSI followed

by embryo transfer, the resultant sperm contributed to fertile

offspring (Figure 6H and Table S5). These findings demonstrate

that the sorting by SSEA1 and Integrin-b3 purifies PGCLCs with

essentially no contamination of teratogenic cells, establishing

the formation and purification of PGCLCs from ESCs without

relevant transgenic markers.

PGCLCs, Spermatogenesis, and Offspring from iPSCs
Finally, we explored whether the germ cell specification pathway

would be reconstituted by iPSCs. We used three iPSC lines,

20D17 (Okita et al., 2007), 178B-5 (Nakagawa et al., 2008), and

492B-4 (Okita et al., 2008), all bearing Nanog-EGFP (NG) trans-

genes. They all expressed NG in the ground state and exhibited

differentiation into EpiLCs with proper morphology and NG

downregulation (Figures S6A, S6D, and S6G). Upon PGCLC

induction, they showed NG upregulation as early as day 2, and

NG-positive cells formed clusters around the periphery of the

aggregates at days 4/6 (Figures S6B, S6E, and S6H).

We FACS sorted the induced aggregates at day 6 by SSEA1

and Integrin-b3. The sorting patterns of the three lines were

somewhat different from one another, and that of the 20D17

line was more similar to those of the ESC lines (Figure 6I and

Figures S6C, S6F, and S6I). In aggregates of the 20D17 line,

NG-positive cells represented �57% (Figure S6C). Consistent

with the characteristics of migrating PGCs, the P1 subpopulation

contained both NG-high and NG-low cells (Figure S6C) (Yama-

guchi et al., 2005). On the other hand, the P2 subpopulation

was rich in NG-high cells and was thus probably an undifferenti-

ated population (Figure S6C).

The expression levels of the 20 genes analyzed in Figure 2D in

the P1 subpopulation from the 20D17 line exhibited a prominent

correlation with those in BV(+) PGCLCs (R2 = 0.96), whereas

those in the other two subpopulations showed a poor correlation

(Figure 6I). We transplanted the P1 cells from the three lines into

the seminiferous tubules of W/Wv mice and evaluated the recip-

ients after 10 weeks. No testes with cells from the 178B-5 or

492B-4 lines showed spermatogenesis, and two with the

178B-5 cells resulted in teratomas (Table 1). Remarkably, 3 out
of 18 testes with the cells from the 20D17 line exhibited proper

spermatogenesis, and we observed no teratomas in the recipi-

ents of this line (Figure 6J and Table 1). With ICSI followed by

embryo transfer, the resultant sperm contributed to fertile

offspring (Figure 6K and Table S5). Notably, some of the

offspring died prematurely, apparently due to tumors around

the neck region (data not shown), similar to those observed in

some of the F1 offspring of the 20D17 chimeras (Okita et al.,

2007). These findings demonstrate that, although iPSCs exhibit

different induction properties depending on the lines, they can

nonetheless form PGCLCs with proper function.

DISCUSSION

We induced pregastrulating epiblast-like cells, EpiLCs, from

ground state ESCs that were maintained by 2i and LIF under

a serum- and feeder-free condition. ESCs cultured in the pres-

ence of serum show substantial heterogeneity (Hayashi et al.,

2008) and were inadequate for the uniform induction of EpiLCs

(data not shown). EpiLC induction involves ActA and bFGF, the

same cytokines that are required for the derivation of EpiSCs,

as well as the addition of 1% KSR. d2 EpiLCs were robustly

induced into the PGC fate, but ESCs, d1/3 EpiLCs, and EpiSCs

were not (Figure 2). This should be a reflection of the fact that

only epiblasts at E5.5�E6.0 serve as an efficient precursor for

the PGC fate (Ohinata et al., 2009). The self-renewing EpiSCs

show a significant heterogeneity (Figure S1) (Hayashi et al.,

2008) and a substantially different transcriptome from the orig-

inal epiblasts (Figure 3), indicating that continuous stimulation

by ActA and bFGF stabilizes the properties of the epiblast-

derived cells (EpiSCs) in a condition that is different than their

original states. It is of note that, when EpiSCs were reverted

into ESC-like cells (Greber et al., 2010), they were induced into

PGCLCs through EpiLCs (Figure S7).

Wnt3 is required for competence for the PGC fate (Ohinata

et al., 2009). EpiLCs express Wnt3 at a level similar to that in

the epiblasts (Figure 1E), and this would confer the PGC compe-

tence to EpiLCs. Addition of exogenous Wnt3a during EpiLC

induction, however, had no additive effects on the properties

of EpiLCs or their capacity to form PGCLCs (data not shown).

Notably, EpiSCs also express a high level of Wnt3 yet are ineffi-

cient for the PGC fate (Figure 1E and Figure S1). The compe-

tence for the PGC fate would therefore be a complex trait gov-

erned by both the signaling and epigenetic states of the cells.

The precise mechanism conferring the competence for the

PGC fate warrants further investigation.

The derivation of EpiLCs has critical implications in stem cell

biology. For example, the ESC to EpiLC differentiation serves

as a model for the investigation of the genetic and epigenetic

mechanisms underlying the ICM to epiblast differentiation. A

comprehensive comparison of genetic and epigenetic properties

among ESCs, EpiLCs, and EpiSCs would lead to a better under-

standing of the naive and primed pluripotency (Nichols and

Smith, 2009). More practically, EpiLCs may serve as a starting

material for the induction of other lineages derived from the

epiblast. The EpiLCs are a transient entity and undergo relatively

large-scale cell death after day 2 of induction via an unknown

mechanism. They have been difficult to maintain longer than
Cell 146, 1–14, August 19, 2011 ª2011 Elsevier Inc. 9



Figure 5. Spermatogenesis and Healthy Offspring from PGCLCs

(A) (i) The seminiferous tubules transplantedwith the PGCLCs, showing (right) or not showing (left) spermatogenesis. Arrowheads indicate spermiated areas of the

tubule. Scale bar, 500 mm. (ii) Spermatozoa derived from the PGCLCs. Scale bar, 20 mm. (iii, iv) Hematoxylin and eosin-stained sections of the tubules with (iii) or

without (iv) spermatogenesis. Scale bar, 100 mm.

(B) The pronucleus stage embryos (i), the two-cell embryos (ii), and the blastocysts (iii) with SC expression (iv) derived from spermatozoa from the PGCLCs. Scale

bar, 100 mm.

(C) The offspring with normal placenta (left) derived from spermatozoa from the PGCLCs. Genotyping of the offspring for BV and SC transgenes is shown at the

bottom.

(D) Weights (gram) of placentas (left) and development of the body weights (right) of offspring from the PGCLC-derived sperm (red circles) and from the wild-type

sperm (blue circles). The mean values are indicated as bars.

(E) A male (left) and female (right) offspring from PGCLC-derived spermatozoa with full fertility.
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3 days and differentiate into mesenchyme-like cells after

passaging (data not shown). They thus may require additional

cytokines or a different condition for their maintenance. None-

theless, EpiLC derivation from ESCs is a straightforward

process, providing a strategy for in vitro reconstitution of lineage

specification.

A previous report showed that ESCs can be converted into

early primitive ectoderm-like cells (EPLCs) (Rathjen et al.,

1999). In that study, the EPLCs were shown to self-renew and

bear epiblast-like gene expression and morphology. In addition,

like the epiblasts, they were unable to contribute to chimeras

when injected into blastocysts. However, their derivation in-

volved serum and an undefined HepG2-conditioned medium,

and their further properties, such as genome-wide gene expres-

sion, were not investigated. Therefore, whether EPLCs might

truly represent a pregastrulating epiblast-like state and serve

as a suitable precursor for PGC-like cells will require further

investigation.

Upon PGCLC induction, a majority of d2 EpiLCs initiate BV

expression, with�40% acquiring strong BV levels on day 2 (Fig-

ure 2C, Figure S2, and Figure S5). We therefore assume that,

upon induction, a majority of d2 EpiLCs are directed toward

the PGC fate, and those (�40%) that acquire Blimp1 at a suffi-

cient level succeed in progressing toward PGCLCs with appro-

priate genetic, epigenetic, and cellular properties, whereas those

that fail to do so, due to some stochastic/physical parameter or

intrinsic difference, result in a nongerm cell trait. In good agree-

ment with this assumption, the BV(SC)(+) cell induction from the

epiblasts ex vivo exhibited similar dynamics (Figure S5). Further-

more, among the cells originated from the most proximal

epiblasts, only those that acquire high, but not low, levels of

Blimp1 develop into PGCs in vivo (Kurimoto et al., 2008). We

noted, however, that the response of the epiblasts was some-

what more cohesive than that of EpiLCs (Figure S5). In part,

this may be because EpiLCs are dissociated into single cells

and reaggregated upon induction, whereas epiblasts are tightly

adhering, perhaps highly synchronized, epithelial structures at

the outset. Further elaboration of the EpiLC/PGCLC induction

protocol may lead to more efficient generation of PGCLCs.

The identification of surface markers for PGCLCs (SSEA-1

and Integrin-b3) has enabled the induction and purification of

PGCLCswith a capacity for proper spermatogenesis from iPSCs

(Figure 6). Upon PGCLC induction, the three iPSC lines exhibited

different differentiation properties (Figure 6 and Figure S6).

Consistent with the fact that 20D17 has the highest capacity

for germline transmission among the three lines (Okita et al.,

2007) (K. Okita and S. Yamanaka, personal communication),

only the PGCLCs from 20D17 exhibited spermatogenesis in

our trials (Figure 6 and Table 1). Indeed, it has been shown

recently that the efficiency of germline transmission of iPSCs

depends highly on the introduction of theMyc transgene (Naka-

gawa et al., 2010): 20D17 was derived by retroviral stable trans-

duction of c-Myc, whereas the other two lines were derived
(F) Bisulfite sequence analysis of 5mC of DMRs of the imprinted genes (Igf2r, Sn

PGCLCs. White and black circles represent unmethylated and methylated CpG

See also Table S5 and Table S6.
without, or by transient expression of, c-Myc (Nakagawa et al.,

2008; Okita et al., 2007, 2008). Thus, the efficiency of the contri-

bution to the spermatogenesis of the PGCLCs derived from the

iPSCs depends on the original properties of the iPSC lines.

The surface marker identification for PGCLCs may also be

useful for the purification of PGCLCs from ESCs of other

mammalian species, including humans. It should be noted that

hESCs have substantially different properties than mESCs but

exhibit characteristics similar to mEpiSCs (Brons et al., 2007;

Tesar et al., 2007; Thomson et al., 1998). However, hESCs and

mEpiSCs do show differences in their gene expression, tran-

scription factor dependency, and responses to signaling mole-

cules (Chia et al., 2010; Greber et al., 2010). Thus, to establish

a defined methodology for inducing proper PGCLCs from

hESCs, careful studies on the nature of hESCs and on the mech-

anism of PGC specification in primate models would be critical.

The mechanism for PGC specification/development has been

difficult to explore, mainly because PGCs are small in num-

ber and refractory to proliferation in vitro (Saitou and Yamaji,

2010). Our culture system readily allows the generation of

PGCLCs in a relatively large number (�105–106) and thus should

serve as a foundation for elucidating areas of germ cell biology

that have thus far been unexplored due to material limitations,

e.g., the biochemical properties of key proteins involved in

PGC specification/proliferation/survival, the mechanism of epi-

genetic reprogramming in PGCs, etc. Continued investigations

aimed at in vitro reconstitution of germ cell development,

including the induction of female PGCLCs and their descen-

dants, will be crucial for a more comprehensive understanding

of germ cell biology in general, as well as for the advancement

of reproductive technology and medicine.

EXPERIMENTAL PROCEDURES

The experimental procedures for animal experiments, FACS analysis, Q-PCR,

microarray analysis, bisulfite sequencing, genotyping, AP staining, immuno-

histochemistry, western/dot blot analysis, and BrdU incorporation are avail-

able in the Extended Experimental Procedures.

ESC Derivation and Culture

The blastocysts bearing the BVSC and ROSA transgenes (B6;129S-Gt[ROSA]

26Sor/J; the Jackson Laboratory) were flushed out from the uterus at E3.5 and

placed and cultured in a well of a 96-well plate in N2B27 medium with 2i

(PD0325901, 0.4 mM: Stemgent, San Diego, CA; CHIR99021, 3 mM: Stemgent)

and LIF (1000 u/ml) onmouse embryonic feeders (MEFs) (Ying et al., 2008). The

expanded ESC colonies were passaged by dissociating with TrypLE (Invitro-

gen). Until passage 4, the ESCs were maintained on MEFs. At passage 4,

the ESCs were stocked in Cell Banker 3 solution (ZENOAQ). Thereafter,

male ESCs were thawed, cultured, and maintained feeder-free on a dish

coated with poly-L-ornithine (0.01%; Sigma) and laminin (10 ng/ml; BD Biosci-

ences). The ESCs bearing the AAG transgenes (129Sv3C57BL/6) (Ohta et al.,

2000) were derived by a standard ESC derivation procedure and were adapted

to the 2i+LIF, feeder-free culture condition. The male iPSCs (MEF-Ng-20D-17,

MEF-Ng-178B-5, and MEF-Ng-492B-4) (Nakagawa et al., 2008; Okita et al.,

2007, 2008) were obtained from RIKEN BRC and were adapted to the

2i+LIF, feeder-free culture condition.
rpn, H19, and Kcnq1ot1) in the offspring derived from spermatozoa from the

sequences, respectively.
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Figure 6. Induction and Purification of PGCLCs with Capacity for Spermatogenesis from ESCs and iPSCs without Germ Cell Reporters

(A) FACS sorting by SSEA1 and Integrin-b3 of day 6 aggregates for the PGC fate from BVSC ESCs (left). The SSEA1/Integrin-b3 high P1 subpopulation is nearly

identical to the BV(+) subpopulation (right). Numbers represent the percentages of each subpopulation.

(B) FACS sorting by SSEA1 and Integrin-b3 of day 6 aggregates for the PGC fate fromAAG ESCs (left). Comparison of the expression levels of the 20 genes (those

analyzed in Figure 2D) in each subpopulation (P1, P2, and P3) with those in BV(+) cells (right). R represents the correlation coefficient.
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EpiSC Derivation and Culture

The EpiSCs were derived from E5.75 epiblasts on MEFs in N2B27 medium

containing activin A (20 ng/ml; Peprotech), bFGF (12 ng/ml; Invitrogen), and

KSR (20%; Invitrogen) (Hayashi and Surani, 2009). The cells were passaged

every 3 days by dissociating with collagenase IV (1 mg/ml; Invitrogen) as cell

clumps, and the cells bearing the typical morphology of EpiSCs were estab-

lished after around 10 passages.

Induction of EpiLCs and PGCLCs

The EpiLCs were induced by plating 1.0 3 105 ESCs/iPSCs on a well of

a 12-well plate coated with human plasma fibronectin (16.7 mg/ml) in N2B27

medium containing activin A (20 ng/ml), bFGF (12 ng/ml), and KSR (1%). The

medium was changed every day. The PGCLCs were induced under a floating

condition by plating 1.0 3 103 EpiLCs in a well of a low-cell-binding U-bottom

96-well plate (NUNC) in a serum-free medium (GK15; GMEM [Invitrogen] with

15%KSR, 0.1 mMNEAA, 1mM sodium pyruvate, 0.1 mM 2-mercaptoethanol,

100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2 mM L-glutamine) in the

presence of the cytokines BMP4 (500 ng/ml; R&D Systems), LIF (1000 u/ml;

Invitrogen), SCF (100 ng/ml; R&D Systems), BMP8b (500 ng/ml; R&D

Systems), and EGF (50 ng/ml; R&D Systems).

Transplantation of the PGCLCs into Seminiferous Tubules

of Neonatal W/Wv Mice and Intracytoplasmic Sperm Injection

The whole aggregates (�192 [two 96-well plates] aggregates per experiment)

of the PGCLC induction were dissociated into single cells by TrypLE treatment

(Invitrogen). Recipient animals (neonatal [7- to 9-day-old] W/Wv mice lacking

endogenous spermatogenesis [Mintz and Russell, 1957] from a WB 3

C57BL/6 F1 background [SLC]) were induced into hypothermic anesthesia

on ice, and the donor cell suspension (the whole-cell dissociates or the

FACS-sorted cells [�2 ml] [Table 1]) was injected into the efferent duct of

each testis (Ogawa et al., 1997). The recipient animals were returned to their

littermates after surgery.

The spermatozoa derived from the PGCLCs were prepared from the semi-

niferous tubules of recipient testis at 8–10 weeks after transplantation. In brief,

the seminiferous tubules were isolated from the recipient testis, and those with

dark central areas corresponding to spermiation or with GFP fluorescence

from the Acro/Act-EGFP transgenes were located under a dissection micro-

scope. These tubules were minced gently with scissors and dissociated to

obtain the spermatogenic cell suspension. The cell suspension was kept at

4�C until ICSI. The ICSI was performed essentially as described previously

(Kimura and Yanagimachi, 1995).

Reversion of EpiSCs into ESC-like Cells

Reversion of EpiSCs into ESC-like cells was performed essentially as

described previously (Greber et al., 2010). EpiSCs maintained on MEFs in

N2B27medium containing activin A (20 ng/ml; Peprotech), bFGF (12 ng/ml; In-

vitrogen), and KSR (20%; Invitrogen) were passaged as clumps onto a dish

without MEFs in N2B27 medium containing 2i, LIF, and KSR (20%). After

2 days, the cells were passaged as single cells in the same medium. After

a further 3 days, the cells were passaged as single cells in N2B27medium con-

taining only 2i and LIF. After 8 days, the growing ESC-like colonies were picked

up and passaged every 2–3 days. The reverted ESC-like cells were established

after several passages.
(C) Testes of W/Wv mice transplanted with the whole population (left), the P1 sub

AAG transgenes induced for the PGC fate for 6 days.

(D) Spermatogenic colonies in a W/Wv testis transplanted with the P1 subpopula

(E and F) Immunofluorescence (IF) analysis of EGFP and Mvh expression in a sp

(G) A spermatazoan derived from AAG ESCs. Scale bar, 10 mm.

(H) The offspring derived from spermatozoa from AAG ESCs. About half of them

(I) FACS sorting by SSEA1 and Integrin-b3 of day 6 aggregates for the PGC fate de

(those analyzed in Figure 2D) in each subpopulation (P1, P2, and P3) with those

(J) (Left) The seminiferous tubules transplanted with the PGCLCs from iPSCs,

spermiated areas of the tubule. Scale bar, 500 mm. (Right) Spermatozoa derived

(K) The offspring derived from spermatozoa from iPSCs. Genotyping of the offspr

See also Figure S6, Table S5, and Table S6.
PGC-like Cell Induction from the Epiblasts

PGC-like cell induction from the epiblasts was performed as described previ-

ously (Ohinata et al., 2009).
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The Gene Expression Omnibus (GEO) database accession number for the
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