Artificial intelligence (AI) promises to transform how government agencies do their work. Rapid developments in AI have the potential to reduce the cost of core governance functions, improve the quality of decisions, and unleash the power of administrative data, thereby making government performance more efficient and effective. Agencies that use AI to realize these gains will also confront important questions about the proper design of algorithms and user interfaces, the respective scope of human and machine decision-making, the boundaries between public actions and private contracting, their own capacity to learn over time using AI, and whether the use of AI is even permitted.
These are important issues for public debate and academic inquiry. Yet little is known about how agencies are currently using AI systems beyond a few headlinegrabbing examples or surface-level descriptions. Moreover, even amidst growing public and scholarly discussion about how society might regulate government use of AI, little attention has been devoted to how agencies acquire such tools in the first place or oversee their use. In an effort to fill these gaps, the Administrative Conference of the United States (ACUS) commissioned this report from researchers at Stanford University and New York University. The research team included a diverse set of lawyers, law students, computer scientists, and social scientists with the capacity to analyze these cutting-edge issues from technical, legal, and policy angles. The resulting report offers three cuts at federal agency use of AI:
- a rigorous canvass of AI use at the 142 most significant federal departments, agencies, and sub-agencies (Part I)
- a series of in-depth but accessible case studies of specific AI applications at seven leading agencies covering a range of governance tasks (Part II); and
- a set of cross-cutting analyses of the institutional, legal, and policy challenges raised by agency use of AI (Part III).
As federal agencies develop new rules and guidance and adjudicate, enforce, and otherwise implement statutory policies, they encounter a constantly changing economic, social, and technological context. The growing sophistication of and interest in artificial intelligence (AI) and machine learning (ML) is among the most important contextual changes for federal agencies during the past few decades.
Coverage
ACUS, Stanford Law School, and NYU School of Law Announce Report on Artificial Intelligence in Federal Agencies
Washington, D.C., Stanford, Calif., and New York, February 18, 2020 — The Administrative Conference of the United States (ACUS), Stanford Law School, and New York University School of Law are pleased to announce the release of a major report exploring federal agencies’ use of artificial intelligence (AI) to carry out administrative law functions. This is…
Read More